Mohamed M S Nasser

Mohamed M S Nasser

Professor of Mathematics, Qatar University

  • Home
  • Conferences
  • Publications
  • Research
  • Conformal Mapping
  • Generalized Neumann Kernel
  • Teaching
  • Contact me
Copyright text here

Publications

Selected Publications

  1. M.M.S. Nasser, O. Rainio, & M. Vuorinen, Condenser capacity and hyperbolic perimeter, Computers and Mathematics with Applications, (2021), in press.
  2. M.M.S. Nasser & M. Vuorinen, Isoperimetric properties of condenser capacity, Journal of Mathematical Analysis and Applications, 499 (2021) 125050.
  3. M.M.S. Nasser & M. Vuorinen, Computation of conformal invariants, Applied Mathematics and Computation, 389 (2021) 125617.
  4. M.M.S. Nasser & M. Vuorinen, Conformal Invariants in Simply Connected Domains, Computational Methods and Function Theory, 20 (2020) 747–775.
  5. E. Kalmoun, M.M.S. Nasser & M. Vuorinen, Numerical computation of Mityuk’s function and radius for circular-radial slit domains, Journal of Mathematical Analysis and Applications, 490 (2020) 124328.
  6. E. Kalmoun, M.M.S. Nasser & K.A. Hazaa, The Motion of a Point Vortex in Multiply Connected Polygonal Domains, Symmetry 12(7) (2020) 1175.
  7. M.M.S. Nasser, PlgCirMap: A MATLAB toolbox for computing conformal mappings from polygonal multiply connected domains onto circular domains, SoftwareX 11 (2020) 100464.
  8. M.M.S. Nasser & M. Vuorinen, Numerical computation of the capacity of generalized condensers, Journal of Computational and Applied Mathematics 377 (2020) 112865.
  9. M.M.S. Nasser, Numerical computing of preimage domains for bounded multiply connected slit domains, Journal of Scientific Computing, 78(1) (2019) 582-606.
  10. M.M.S. Nasser & C.C. Green, A fast numerical method for ideal fluid flow in domains with multiple stirrers, Nonlinearity, 31(3) (2018) 815-837
  11. M.M.S. Nasser, Numerical conformal mapping onto the parabolic, elliptic and hyperbolic slit domains, Bulletin of the Malaysian Mathematical Sciences Society, 41 (2018) 2067-2087.
  12. Jörg Liesen, Olivier Sète & M.M.S. Nasser, Fast and accurate computation of the logarithmic capacity of compact sets, Computational Methods and Function Theory, 17(4) (2017) 689-713.
  13. M.M.S. Nasser, Jörg Liesen & Olivier Sète, Numerical computation of the conformal map onto lemniscatic domains, Computational Methods and Function Theory, 16(4) (2016) 609-635.
  14. D.G. Crowdy, C.C. Green, E.H. Kropf & M.M.S. Nasser, The Schottky-Klein prime function: a theoretical and computational tool for applications, IMA Journal of Applied Mathematics,  81 (2016) 589-628.
  15. M.M.S. Nasser, Fast computation of the circular map, Computational Methods and Function Theory, 15(2) (2015) 187-223.
  16. M.M.S. Nasser, Takashi Sakajo, Ali H.M. Murid & Lee Khiy Wei, A fast computational method for potential flows in multiply connected coastal domains, Japan Journal of Industrial and Applied Mathematics, 32(1) (2015) 205–236.
  17. M.M.S. Nasser, Fast computation of hydrodynamic Green’s function, Revista Cubana de Fisica, 32(1) (2015) 26–32.
  18. M.M.S. Nasser, Fast solution of boundary integral equations with the generalized Neumann kernel, Electronic Transactions on Numerical Analysis, 44 (2015) 189–229.
  19. Arif A.M. Yunus, Ali H.M. Murid & M.M.S. Nasser, Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and rectilinear slit regions, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 470(2162) (2014), Article No. 20130514.
  20. Arif A.M. Yunus, Ali H.M. Murid & M.M.S. Nasser, Numerical evaluation of conformal mapping and its inverse for unbounded multiply connected regions, Bulletin of the Malaysian Mathematical Sciences Society, 37(1) (2014) 1–24.
  21. M.M.S. Nasser, Convergence of numerical solution of generalized Theodorsen’s nonlinear integral equation, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 213296, 11 pages.
  22. M.M.S. Nasser, Ali H.M. Murid & Ali W. K. Sangawi, Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel, TWMS Journal of Pure and Applied Mathematics, 5(1) (2014) 96–117.
  23. M.M.S. Nasser & F.A.A. Al-Shihri, A fast boundary integral equation method for conformal mapping of multiply connected regions, SIAM Journal on Scientific Computing, 35(3) (2013) A1736–A1760.
  24. M.M.S. Nasser, Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions, Journal of Mathematical Analysis and Applications, 398 (2013) 729-743.
  25. M.M.S. Nasser & A.H.M. Murid, A boundary integral equation with the generalized Neumann kernel for the Ahlfors map, Clifford Anal. Clifford Algebr. Appl. 2(4) (2013) 307–312.
  26. Samer A.A. Al-Hatemi, Ali H.M. Murid & M.M.S. Nasser, A boundary integral equation with the generalized Neumann kernel for a mixed boundary value problem in unbounded multiply connected regions, Boundary Value Problems, 2013 (2013) Article No. 54.
  27. M.M.S. Nasser, Ali H.M. Murid & Samer A.A. Al-Hatemi, A boundary integral equation with the generalized Neumann kernel for a certain class of mixed boundary value problem, Journal of Applied Mathematics, Volume 2012 (2012), Article ID 254123, 17 pages.
  28. M.M.S. Nasser, A.H.M. Murid, M. Ismail & E.M.A. Alejaily, Boundary integral equations with the generalized Neumann kernel for Laplace’s equation in multiply connected regions, Applied Mathematics and Computation, 217 (2011) 4710–4727.
  29. M.M.S. Nasser, Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains, Journal of Mathematical Analysis and Applications, 382 (2011) 47-56.
  30. M.M.S. Nasser, Boundary integral equations for potential flow past multiple aerofoils, Computational Methods and Function Theory, 11 (2011) 375–394.
  31. M.M.S. Nasser, A nonlinear integral equation for numerical conformal mapping, Advances in Pure and Applied Mathematics, 1 (2010) 47–64.
  32. M.M.S. Nasser, Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel, SIAM Journal on Scientific Computing, 31 (2009) 1695–1715.
  33. M.M.S. Nasser, A boundary integral equation for conformal mapping of bounded multiply connected regions, Computational Methods and Function Theory, 9 (2009) 127–143.
  34. R. Wegmann & M.M.S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions, Journal of Computational and Applied Mathematics, 214 (2008) 36-57.
  35. M.M.S. Nasser, A.H.M. Murid & Z. Zamzamir, A boundary integral method for the Riemann-Hilbert problem in domains with corners, Complex Variables and Elliptic Equations, 53 (2008) 989-1008.
  36. R. Wegmann, A.H.M. Murid & M.M.S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel, Journal of Computational and Applied Mathematics, 182 (2005) 388-415.
  37. A.H.M. Murid & M.M.S. Nasser, Eigenproblem of the generalized Neumann kernel, Bulletin of the Malaysian Mathematical Science Society, 26 (2003) 13–33.

Other Papers

  1. M.M.S. Nasser & E. Kalmoun, Application of integral equations to simulate local fields in carbon nanotube reinforced composites, In R. McPhedran, S. Gluzman, V. Mityushev, N. Rylko (eds.), 2D and Quasi-2D Composite and Nanocomposite Materials, Elsevier, 2020, pp.~233–248.
  2. AAM Yunus, A Yunus & M.M.S. Nasser, Numerical Conformal Mapping onto the Entire Complex Plane Bounded with Finite Straight Slit and Logarithmic Spiral Slits, Journal of Physics: Conference Series 1212 (2019) 012014.
  3. AHM Murid, AAM Yunus & M.M.S. Nasser, Numerical Conformal Mapping onto the Exterior Unit Disk with a Straight Slit and Logarithmic Spiral Slits, Journal of Physics: Conference Series 1212 (2019) 012015.
  4. M.M.S. Nasser, A boundary integral method for the general conjugation problem in multiply connected circle domains,  in: Piotr Drygas & Sergei Rogosin (eds), Modern Problems in Applied Analysis, Birkhäuser Basel, 2018, pp. 153-168.
  5. S.A.A. Al-Hatemi, A.H.M. Murid and M.M.S. Nasser, Solving a mixed boundary value problem via an integral equation with adjoint generalized Neumann kernel in bounded multiply connected regions, AIP Conf. Proc., 1522 (2013), pp. 508–517.
  6. A.A.M. Yunus, A.H.M. Murid and M.M.S. Nasser, Radial slits maps of unbounded multiply connected regions, AIP Conf. Proc., 1522 (2013), pp. 132–139.
  7. A.S.A. Hamzah, A.H.M. Murid & M.M.S. Nasser, Boundary integral equations with the generalized Neumann kernel for Robin problem in simply connected region, International Journal of Applied Mathematics & Statistics, 44(14) (2013) 8–20.
  8. Ali W. K. Sangawi, Ali H.M. Murid & M.M.S. Nasser, Radial slit maps of bounded multiply connected regions, Journal of Scientific Computing, 55 (2013) 309–326.
  9. Ali H. M. Murid, Mohmed M. A. Alagele & M.M.S. Nasser, Integral equation with the generalized Neumann kernel for computing Green’s function on simply connected regions, Malaysian Journal of Fundamental and Applied Sciences, 9 (3) (2013) 161–166.
  10. Samer A.A. Al-Hatemi, Ali H.M. Murid & M.M.S. Nasser, Solving a mixed boundary value problem via an integral equation with generalized Neumann kernel on unbounded multiply connected region, Malaysian Journal of Fundamental and Applied Sciences, 8 (4) (2012) 177–181.
  11. Ali W. K. Sangawi, Ali H.M. Murid & M.M.S. Nasser, Annulus with circular slit map of bounded multiply connected regions via integral equation method, Bulletin of the Malaysian Mathematical Sciences Society, 35 (4) (2012) 945–959.
  12. Ali W. K. Sangawi, Ali H.M. Murid & M.M.S. Nasser, Parallel slits map of bounded multiply connected regions, Journal of Mathematical Analysis and Applications, 389 (2012) 1280–1290.
  13. Ali W. K. Sangawi, Ali H.M. Murid & M.M.S. Nasser, Circular slits map of bounded multiply connected regions, Abstract and Applied Analysis, Volume 2012 (2012), Article ID 970928, 26 pages.
  14. Arif A.M. Yunus, Ali H.M. Murid & M.M.S. Nasser, Conformal mapping of unbounded multiply connected region onto canonical slit regions, Abstract and Applied Analysis, Volume 2012 (2012), Article ID 293765, 29 pages.
  15. Arif A.M. Yunus, Ali H.M. Murid & M.M.S. Nasser, Numerical conformal mapping of unbounded multiply connected regions onto circular slit regions, Malaysian Journal of Fundamental and Applied Sciences, 8 (1) (2012) 38–43.
  16. Ali H.M. Murid, Ali W. Kareem Sangawi and M.M.S. Nasser, Integral and differential equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits, Journal of Fundamental Sciences, 7 (2011) 12–18.
  17. Ali W. K. Sangawi, Ali H.M. Murid & M.M.S. Nasser, Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits, Applied Mathematics and Computation, 218 (2011) 2055–2068.
  18. M.M.S. Nasser, Numerical solution of the Riemann-Hilbert problem, Punjab University Journal of Mathematics, 40 (2008) 9-29.
  19. M.M.S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel on unbounded multiply connected regions, The University Researcher (IBB University Journal), 20 (2009) 47–60.
  20. M.M.S. Nasser, Boundary Integral Equations with the Generalized Neumann Kernel for the Neumann Problem, Matematika, 23 (2007) 83-98.
  21. M.M.S. Nasser, A.H.M. Murid & N.S. Amin, A boundary integral equation for the 2D external potential flow, International Journal of Applied Mechanics and Engineering, 11 (2006) 61-75.
  22. A.H.M. Murid, M.M.S. Nasser & N.S. Amin, A boundary integral method for the planar external potential flow around airfoils, Jurnal Teknologi, 42(C) (2005) 29–42.
  23. M.R.M Razali & M.M.S. Nasser, Numerical experiments on eigenvalues of weakly singular integral equations using product Simpson’s rule, Matematika, 18 (2002) 9-20.
  24. A.H.M. Murid, M.R.M. Razali & M.M.S. Nasser, Solving Riemann problem using Fredholm integral equation of the second kind. In Proceeding of Simposium Kebangsaan Sains Matematik Ke-10. UTM, Johor, Malaysia, 2002, pp. 171–178.