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ABSTRACT

Albatarni, Salam, M., Masters : June : 2025, Masters of Science in Computing
Title: Relevance Scoring of Arabic and English Written Essays
with Dense Retrieval
Supervisor of Thesis: Dr. Tamer Elsayed.
Automated Essay Scoring automates the grading process of essays, providing a great
advantage for improving the writing proficiency of students. While holistic essay scoring
research is prevalent, a noticeable gap exists in scoring essays for specific quality traits.
In this thesis, we focus on the relevance trait, which measures the ability of the student
to stay on-topic throughout the entire essay. We propose a novel approach for graded
relevance scoring of written essays that employs dense encoders. Dense representations
of essays at different relevance levels then form clusters in the embeddings space,
such that their centroids are potentially separate enough to effectively represent their
relevance levels. We hence use the simple 1-Nearest-Neighbor classification over those
centroids to determine the relevance level of an unseen essay. We evaluate our approach
in both task-specific (training and testing on the same task) and cross-task (testing on
unseen tasks) scenarios using English (ASAP) and Arabic (in-house) datasets. For
English, our method achieves state-of-the-art performance in the task-specific setting
and matches baseline performance in the cross-task setting, while a few-shot analysis
shows it reduces labeling costs with only a 9% drop in effectiveness. For Arabic, our
approach outperforms the baselines with 5 and 2 points in task-specific and cross-task
settings respectively.
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CHAPTER 1: INTRODUCTION
Automated Essay Scoring (AES) has been a prominent field of research for over

five decades [1]. AES aims to automatically assign a quality score to written essays.
It comes in handy for teachers, alleviating the burden of correcting numerous essays
and allowing them to concentrate on more crucial responsibilities. Furthermore, AES
has the advantage of providing quick and consistent feedback to students, improving
the learning process. AES research has primarily focused on holistic scoring [2],
which provides a single score reflecting the overall quality of the essay. However, in
terms of practicality and effectiveness, a single score falls short in guiding students on
how to enhance their skills. Trait-based AES, shown in figure 1.1, fills this gap by
individually scoring the traits quality, e.g., organization, development, and relevance
[3]. Trait scoring enables students to gain insights into specific areas of improvement,
empowering them to understand their weaknesses and enhance their writing proficiency.

Figure 1.1. Trait-based AES system.

In this work, we focus on scoring the relevance (or so-called prompt adherence)
trait. The relevance trait, in particular, evaluates the extent to which the essay aligns
with the given task-prompt.1 This trait is crucial as it gauges the student’s ability to stay
on topic, i.e., maintaining a clear and direct connection to the main subject throughout
the writing. Several studies used the essence of prompt adherence as a means to aid
in holistic scoring [4]; however, there is a lack of tailored scoring approaches for the
relevance trait.

AES systems can be categorized into two types based on the training and inference
settings as shown in figure 1.2. Task-specific AES focuses on a single writing task, where
the system is trained exclusively on essays written for one specific task, then, during
inference, it grades unseen essays written for the same task.

This setup enables the AES system to learn the distinctive characteristics asso-
ciated with a specific task, allowing for a more precise assessment of the essays written
in response to that task. This type is predominant in the literature for both holistic and

1The task-prompt refers to the specific instructions or guidelines provided to students to guide their
essay writing on a particular topic.

Figure 1.2. Task-specific scores vs cross-task scoring
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trait-based AES. The early research on task-specific AES used feature-based learning
approaches [5], [6]. Then, different neural-based approaches have been proposed [3],
[7], [8]. Subsequently, pre-trained language models have become dominant for devel-
oping AES systems [9]–[12]. Most of those works focused on holistic scoring, and less
attention has been given to scoring individual traits.

Meanwhile, cross-task (also known as cross-prompt) AES systems are trained on
essays written for multiple source writing tasks to grade essays written for unseen target
tasks [12]. In this setting, the AES system leverages insights gained from various writing
tasks to score essays from unseen tasks. It is commonly observed in real-world scenarios
that limited data is available for target tasks [13], which emphasizes the necessity for
developing generalizable cross-task AES systems for grading essays for unseen tasks.
Multiple research studies have proposed cross-task holistic scoring systems, e.g., [13]–
[15]. More recently, other approaches for cross-task AES systems have been proposed
to score individual traits of the essay along with the holistic score, e.g., [16]–[18].
Nevertheless, all traits are handled the same, without employing a distinct approach for
any specific trait, overlooking the fact that each trait focuses on a different dimension of
the writing quality of the essay.

While the aforementioned research has significantly advanced AES for the En-
glish language, the Arabic language has received considerably less attention in this
domain. In contrast to the extensive body of work on English AES, scientific research
dedicated to Arabic AES remains minimal, leaving a notable gap in the field. Despite
this, there has been little work on Arabic task-specific AES, most of them utilizing
neural networks [19], [20]. Some studies extracted hand-crafted features, such as the
number of spelling mistakes [21], [22]. Few studies addressed traits scoring including
structure [23], and very recently the relevance trait [24]. While these studies represent a
commendable initiative in addressing the problem, some of them fall short in adhering to
well-established evaluation metrics within the field. Additionally, they often fail to pro-
vide critical details regarding the datasets used, as well as the methodologies employed
for training and testing [23], [24]. Furthermore, to date, none of these studies explored
Arabic cross-task scoring, whether in the context of holistic or trait-based scoring.

To this end, in this work, we focus on scoring the relevance trait for both task-
specific and cross-task scenarios across two languages, namely, English and Arabic.
We propose a novel approach for graded relevance scoring (i.e., scoring into one of
multiple relevance grades or levels) of written essays. It employs dense encoders to
represent training essays in the embedding space. We then hypothesize that the dense
representations of essays having the same relevance level form a cluster in that space
such that the centroids of the clusters of different relevance levels will be separate enough
to effectively represent their respective relevance levels. We hence use a simple 1NN
classification model over those centroids to determine the relevance level of an unseen
essay.

We leverage multiple dense encoders, which have demonstrated effectiveness in
retrieval and sentence representation tasks, and apply them to score the relevance trait.

In the context of graded relevance scoring of written essays, we address the
following research questions, for both languages, Arabic and English:

• RQ1: Can the pre-trained encoders be effectively leveraged for the task? (Out-
of-the-box scenario)

• RQ2: What is the impact of fine-tuning the encoders on the performance? (Fine-
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tuning scenario)

• RQ3: In case no training essays are available, can we effectively leverage
previously-labeled essays from other tasks? (Cross-task scenario)

Given that the English data set is much larger, we also address an additional
question specific to English essays:

• In case only few training essays are available for each relevance level, how would
that affect the performance? (Few-shot learning scenario)

Our study yields promising results when scoring the relevance trait using pre-
trained encoders; however, fine-tuning consistently outperforms the baselines for both
languages. Furthermore, we propose an extension to our approach for the cross-task
setup. We transform the approach to task-independent by “excluding” the information
of the task-prompt from the essays. This simple trick resulted in a performance boost,
achieving an on par performance with a baseline model for that scenario.

In summary, our main contribution are:

1. We propose a novel approach that employs dense retrieval for the general task of
graded relevance scoring.

2. For English relevance trait AES:

(a) Our approach establishes a new SOTA performance on scoring the relevance
of English essays in the task-specific setup.

(b) We analyze the performance of our approach in a more practical few-shot
scenario, showing a significant saving of labeling cost while sacrificing only
9% of the effectiveness.

(c) We propose a simple but effective cross-task extension of our approach that
made it on par with the SOTA performance.

3. For Arabic relevance trait AES:

(a) Our proposed approach, pre-trained and fine-tuned, outperformed the Arabic
baselines, demonstrating its robustness.

(b) In the cross-task scenario, our simple approach outperforms all baselines
across different encoders in different setups.

The rest of the thesis is organized as follows. Chapter 2 discusses the work
related to relevance trait scoring for task-specific and cross-task setups for both English
and Arabic languages. A detailed description of our approach is provided in Chapter
3. Chapter 4 presents the experimental setup and answers our research questions for
English relevance scoring while Chapter 5. Finally, we conclude in Section 6.
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CHAPTER 2: RELATED WORK
In this section, we offer a comprehensive review of existing methods for task-

specific and cross-task techniques for relevance scoring. We address the limitations of
prior work and highlight the unique contributions and distinctions of our approach.

2.1. English AES

2.1.1. Task-specific Scoring

When it comes to AES, task-specific holistic scoring is predominantly empha-
sized, with less attention directed towards trait scoring. The early research concerning
the scoring of the relevance trait focused on feature-based approaches. Persing and Ng
[5] pioneered the focused exploration of the relevance trait. They used a linear SVM
regression model with a rich set of lexical and knowledge-based features to measure the
relevance between the essays and the task-prompt. Mathias and Bhattacharyya [6] used
a common feature set with a Random Forest (RF) classifier for predicting the holistic
and traits scores.

Others employed traditional retrieval approaches, such as TF-IDF and pseudo-
relevance feedback (PRF), to measure the similarity between the essay and the task-
prompt. Cummins, Yannakoudakis, and Briscoe [25] expanded the task prompt, and the
relevance score was computed as the cosine similarity between the TF-IDF representa-
tions of the essay and the expanded prompt. The expansion terms were selected based on
the closest words to the prompt vector, which was constructed using random-indexing,
CBoW, skip-gram, and PRF. Similarly, [26] used TF-IDF, CBoW, and skip-thoughts
models to measure the similarity between the prompt and each sentence in the essay.
Chen and Li [4] used the relevance of the essay to the prompt as a feature for holistic
scoring. The essay and prompt representations were acquired through an attention-based
RNN, with the relevance score being computed via element-wise multiplication between
the essay and prompt vectors.

In light of the limited research on trait scoring, the objective of Mathias and
Bhattacharyya [3] was to leverage various models originally intended for holistic scoring
to score multiple essay traits, including relevance. Three approaches were used: a
feature-based model with RF algorithm [6], a string kernel-base approach [27], and an
attention-based neural model [7]. Kumar, Mathias, Saha, et al. [10] used a multi-task
neural model to predict multiple writing trait scores in parallel (auxiliary tasks), and
these scores were used by the network to predict the holistic score (primary task). They
also tried to set one trait as a primary task and other traits along with the holistic score
as auxiliary tasks. Most recently, Do, Kim, and Lee [28] employed a large language
model, specifically T5, fine-tuning it to score all traits along with the holistic score.
They prompted the model with the essay, prompt text, and the holistic and trait scores.
Although their model proved to be extremely effective, setting new state-of-the-art results
for nearly all traits, their training setup differs somewhat from traditional task-specific
scoring. Instead of training a separate model for each task, they trained one model on
all available tasks and then tested it on all tasks as well. While this approach efficiently
avoids the need to train multiple models, it does not fully align with the task-specific
scoring definition, where the model should be trained exclusively on the target task [2],
[29]. In a follow-up study, the same author employed Reinforcement Learning (RL)
to design an evaluation method based on the metrics commonly used in AES systems.
While this approach slightly improved upon the results from fine-tuning T5, it retains
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the same limitation: a single model is used for all tasks, rather than one model per
task [30].

The related work reveals two major weaknesses in relevance scoring. First,
although there are some approaches that have targeted the relevance trait, the majority
of those approaches rely on feature-based and traditional retrieval methods [5], [26].
Second, none of the recent approaches focused on the relevance trait in specific; rather,
they offered a generalized model for all traits, ignoring the fact that each trait pertains
to different aspects within the essay [10], [28], [30]. In contrast, our method eliminates
the need for feature engineering by leveraging recent advances in dense information
retrieval, offering a dedicated approach for modeling the relevance trait in AES.

2.1.2. Cross-task Scoring

Cross-task AES aims to train a model using labeled essays from one or more
source tasks and then apply the model to score essays from a target task. Similar to
task-specific research, predominant studies on cross-task evaluation have focused on
holistic scoring [13], [14], [31]. The cross-task trait-based AES was introduced by
Ridley, He, Dai, et al. [16], where all of the efforts previously focused solely on holistic
scoring. Their approach is an extension of the work of Ridley, He, Dai, et al. [31], which
utilized part-of-speech embedding with a convolution network to generate the essay’s
representation. The architecture was modified by introducing shared low-level layers to
learn common representation across tasks and high-level layers to capture task-specific
information. ProTACT model [17] also employed the idea of hierarchical representation,
employing low-level layers for information sharing across traits and top layers for trait-
specific information. Moreover, the task-prompt was utilized to acquire prompt-aware
representation by applying essay-prompt attention. Chen and Li [18] proposed PMAES,
a framework designed to improve cross-task representation through a prompt-mapping
contrastive learning strategy. This approach involved projecting source task essays onto
target tasks, and generating mapping representations specific to the target task. The
objective was to minimize the distance between these mapping pairs, thereby aligning
source and target tasks to achieve greater consistency in their representations. Li and
Ng [32] explored a variety of text features to develop a purely feature-based model that
could compete with more complex models. They achieved competitive results with
a simple network, reaching state-of-the-art performance on the ASAP dataset for the
relevance trait. Most recently, Do, Park, Ryu, et al. [33] used a T5-based pre-trained
model to obtain a grammar-corrected version of the input essay. The model learns to
compare the original and grammar-corrected essays and infer the output score.

Trait cross-task AES has received less attention compared to task-specific AES.
Similar to the task-specific approaches, all of the existing solutions for cross-task pro-
vided a common framework for all the traits. Our cross-task approach is tailored
specifically for the relevance trait. This is done by generating task-independent repre-
sentations, which effectively map essays with similar relevance levels across different
tasks closer together. One of the unique aspects of our approach is its adaptability for
both task-specific and cross-task scenarios, requiring only minor modifications.
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2.2. Arabic AES

Arabic AES faces a significant challenge that has hindered progress in the field:
the lack of publicly available annotated essay datasets. Unlike English AES, which
benefits from a wealth of resources, Arabic AES research has been considerably slower
due to this limitation. Most studies in this domain rely on in-house datasets, which, while
valuable for individual research efforts, are not accessible to the broader community.
This lack of standardization prevents meaningful comparisons between models and
limits advancements that could arise from collaborative and reproducible research.

With that being said, the work on Arabic AES can be broadly categorized
into traditional feature-based approaches, neural network-based methods, and language
model-based methods.

Traditional approaches have predominantly relied on rule-based techniques and
feature engineering. For instance, [34] utilized the Longest Common Subsequence
(LCS) algorithm combined with Arabic WordNet to evaluate short Arabic answers,
achieving high accuracy in scoring. Similarly, [21] extracted features from lexical,
syntactic, and semantic levels, combining them to produce a final essay score, demon-
strating the effectiveness of multi-level linguistic analysis. Other studies, such as [35],
explored similarity measures like Euclidean, Jaccard, and Cosine distances alongside
Arabic WordNet for semantic analysis, with Cosine similarity yielding the lowest error.
Hybrid stemming techniques, as proposed by [36] and [37], combined Extended Light
Stemmer, ISRI Stemmer, and Arabic WordNet to reduce words to their root forms,
significantly improving scoring precision. Additionally, [23] employed Support Vector
Regression (SVR) with morphological, syntactic, semantic, and discourse features to
evaluate essays across multiple criteria, achieving a 96% accuracy rate. Lastly, [22]
introduced a system that uses Latent Semantic Analysis (LSA) and Rhetorical Struc-
ture Theory (RST), achieving a 90% accuracy rate and a 0.756 correlation with human
scoring. These traditional methods, while effective, often require extensive feature
engineering and struggle with deeper semantic understanding.

In contrast, neural network and language model-based approaches have begun
to address these limitations by leveraging advanced machine learning techniques. For
example, optimization algorithms like Particle Swarm Optimization and the e-Jaya
algorithm was used to train neural networks, demonstrating the potential of optimization
techniques in improving model performance [19], [20]. More recently, transformer-
based language models have gained traction in Arabic AES. Machhout and Zribi [24]
proposed an enhanced AraBERT-based approach, augmented with handcrafted features,
to score the relevance of Arabic essays to their prompts, achieving a remarkable 0.88
correlation with human scores.

While the presented methods are valuable early efforts in Arabic AES, there
remains a significant gap to be addressed. First, nearly all previous approaches rely on
feature engineering [19], [23], [34]. Additionally, much of the existing work focuses
solely on holistic scoring [19], [20], [34]. Even studies targeting the relevance trait apply
simple fine-tuning of AraBERT without accounting for the specific characteristics of
relevance scoring [24]. Finally, to our knowledge, no prior work has explored cross-task
setups in Arabic AES, and certainly none for the relevance trait specifically.

We address these gaps by proposing a method that leverages recent advancements
in dense retrieval, eliminating the need for feature engineering. Moreover, to the best
of our knowledge, we are the first to propose a method for cross-task scoring of the

6



relevance trait in Arabic.
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CHAPTER 3: METHODOLOGY
3.1. Proposed Approach

In this section, we present and discuss in detail our proposed approach for graded
relevance scoring of essays in different scenarios. We address the task-specific, fine-
tuning, cross-task scenarios in the following sections.

3.1.1. Graded Relevance Scoring of Essays with Dense Encoders

Figure 3.1. Training phase of our proposed approach for graded relevance.

Dense retrieval models are generally encoders that are trained to generate dense
vector representations of documents (and queries) so that texts that are topically similar
are close in the embedding space, while those that are topically distant are further apart
in that space. This can then be employed to find documents that are relevant to a given
query, in a typical retrieval scenario, by computing the similarity between the dense
representations of the query on one side and documents on the other side.

Inspired by this concept, our approach builds on this idea to score the relevance
trait of students’ written essays given a task-prompt, but from a different angle. While
the obvious approach is to use the prompt as a query and the test essays as documents in
the above setup, several challenges arise. Notably, prompts often differ in length from
essays, making the mapping of similarity scores to relevance levels harder. Furthermore,
this approach may not capture the diverse writing proficiency levels exhibited in essays,
particularly those written by school students. This variability adds complexity to the
problem.

Our approach relies heavily on two main components: having examples of
labeled (i.e., manually-graded or scored) essays from each relevance level, and utilizing
a robust dense encoder. We hypothesize that the encoder can effectively encode essays
in a manner that positions those from the same relevance level in close proximity while
keeping essays from different relevance levels distant. This yields a (somewhat) separate
cluster of essays (in the embedding space) for each different relevance level. Therefore,
centroids of those clusters can serve as reference points (or good representatives) of
their corresponding relevance levels.

This constitutes the “training” phase of our approach. During inference (when
we get unseen essays to score), we simply classify essays by assigning them the relevance
level corresponding to the nearest centroid. In other words, our approach employs a
1-Nearest-Neighbor (1NN) algorithm over the centroids corresponding to the different
relevance levels.

This innovative setup reframes the problem; it treats the test essay (i.e., the one
to be scored) as a query and the centroids as documents. Our goal is to identify the most
“relevant” document (centroid) for the given query (test essay), effectively assigning
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a relevance score based on this proximity in the embedding space. This approach
also transforms the problem into a multi-class classification scenario, where the classes
represent the various relevance levels. It is worth mentioning that the model described
in this section is a task-specific model, as it is trained on essays labeled for a given
task-prompt. Figure 3.1 illustrates the training phase of our approach.

Formally, we are given a task-prompt p and a corresponding training set of essays
Sp. Each training essay s ∈ Sp is assigned a relevance level R(s). We denote the set
of all training essays that are assigned the relevance level i as Si

p, where Si
p = {s ∈

Sp|R(s) = i}. We first encode each training essay s using the dense encoder D to get
its dense vector representation e⃗s, where e⃗s = D(s). Next, for each relevance level i,
we compute its corresponding centroid C⃗i as the mean of the essay vectors of that level,
as follows.

C⃗i =
1

|Si
p|

∑
s∈Si

p

e⃗s (3.1)

where |Si
p| is the number of training essays that are assigned the relevance level i.

Subsequently, for a given test essay t, we estimate its relevance level R(t) based
on its most similar relevance centroid, as follows.

R(t) = argmax
i

ϕ(e⃗t, C⃗i) (3.2)

where ϕ represents the similarity function used to measure the closeness of the test
essay and the relevance centroids (i.e., cosine similarity). The complete algorithm
of our proposed method, ProtoGR (Prototypes for Graded Relevance), is outlined in
Algorithm 1.

Algorithm 1 Pre-trained ProtoGR Scoring
1: function Train(Dataset,Dense Encoder) ▷ Train the model
2: relevance levels← distinct relevance levels in Dataset
3: C← [] ▷ Initialize centroids list
4: for i in relevance levels do ▷ For each relevance level
5: Si

p ← essays in Dataset with relevance level i
6: e⃗i = encoder(Si

p) ▷ Encode essays
7: c⃗i = mean(ei) ▷ Compute centroid for level i
8: C.append(c⃗i) ▷ Append the centroid to the list of centroids
9: return C

10: function Predict(e⃗t, C) ▷ Prediction function
11: R(t) = argmaxϕ(e⃗t, C⃗) ▷ Find closest level
12: return R(t)

As mentioned earlier, our method relies heavily on the effectiveness of the
encoder model used to represent the essays. Dense retrieval models are originally
trained for relevance tasks, thus are perfect option to serve our purpose in scoring the
relevance trait. It is important to note that, although we redefine the problem as a
retrieval problem, this method is not restricted to retrieval encoders; models trained on
similar tasks, such as text similarity, are also valid options. We discuss the encoder
selection in Chapter 4.
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3.1.2. Fine-tuning for Task-specific Scoring

As we reframe AES relevance scoring as a retriaval task, we also draw inspiration
from their fine-tuning strategies, while adapting them to fit the specific context of graded
relevance.

In tasks involving retrieval with dense models, the training dataset comprises
queries, relevant, and non-relevant documents. The primary objective is to train the
model to decide whether a given document is relevant to a specific query. In our context,
essays within the same relevance level are considered “relevant to each other,” and essays
with different relevance levels are considered “non-relevant to each other.” Hence, our
model needs to be optimized to differentiate between the different relevance levels.

Contrastive loss has been widely adopted in retrieval models for its effectiveness
in learning discriminative embeddings [38], [39]. In our context, it serves a dual
purpose: clustering essays with the same relevance level while ensuring essays from
different levels remain distinct. This approach mirrors retrieval tasks, where the goal
is to bring relevant documents closer and push non-relevant ones farther apart in the
embedding space.

In our case, the loss function is treated as a hyperparameter, with options in-
cluding the original loss function (the loss function that the encoder was trained with)
and Pairwise Softmax Cross-Entropy (PSCE) loss. While using the encoder’s original
loss function i.e., the one it was trained with, may seem logical, PSCE loss has proven
effective in high-performance dense retrieval models [38] and is also friendly to GPU
memory usage compared to other loss functions.

PSCE loss considers the similarity between positive and negative examples
relative to an anchor example, enhancing the model’s capacity to separate positive from
negative instances.

LPSCE(sa, s
+, s−) = − log

eϕ(sa,s
+)

eϕ(sa,s+) + eϕ(sa,s−)
(3.3)

This setup raises multiple alternatives in terms of how the negative training
examples are sampled. For an anchor essay example sa of relevance level R(sa), we can
sample negative examples s− from all the other relevance levels, i.e., R(sa) ̸= R(s−).
We denote this as sampling from All levels. This exposes the model to training triplets
from all different levels. We can also restrict the sampling to the relevance levels that
are relatively far from the relevance level of the anchor, i.e., R(sa) ̸= R(s−) ± 1. We
denote this as sampling from Easy levels, since they should be easy to distinguish. The
rationale is that essays with closer scores might actually have the same score if rated
by a different rater, potentially confusing the model. Alternatively, we can restrict the
sampling to the relevance levels that are closest to the relevance level of the anchor, i.e.,
R(sa) = R(s−) ± 1. We denote this as sampling from Hard levels, since they should
be hard to distinguish. The rationale is that by mastering this, the model will also be
better at distinguishing relevance levels with larger margins. In each case, the number
of negative examples we sample from each selected level might vary.

As the encoder here is fine-tuned, we, hereafter, denote such model by ft-
ProtoGR, the fine-tuned Prototypes for Graded Relevance.
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Figure 3.2. Training phase of our proposed cross-task approach with task-independent
representations.

3.1.3. Cross-Task Scoring

In the earlier scenarios, we assume there are labeled (i.e., scored or graded) essays
for the given writing task, which are needed to build a task-specific model, whether it is
pre-trained or fine-tuned. However, this is not always available. We might need to build
a model with no labeled essays for the test task, i.e., a “zero-shot” model. In such a case,
the only available labeled essays to learn from come from other different tasks than the
test task, hence denoted as the cross-task scenario. In the cross-task setup, the training
typically utilizes multiple source tasks, whereas testing is conducted on an unseen target
task.

Applying the pre-trained or fine-tuned ProtoGR approach directly to the cross-
task scenario (by just training on the superset of all the training essays of the source
tasks) would yield separate clusters (in the embedding space) of task-related essays
rather than clusters of essays of same relevance level regardless of the task. Hence, the
challenge of that scenario in our approach is how to “normalize” the representation of
the essays in order to get “task-independent” representations.

Since the dense encoder represents texts in an embedding “semantic” space, it
is tempting to make those representations task-independent by simply subtracting the
task-prompt representation, disentangling the topic-specific semantic features from the
relevance level features. Consequently, the cluster of each relevance level will contain the
normalized task-independent essay embeddings from all the source tasks. Accordingly,
the computed centroids are potentially task-independent. Similar to the earlier scenario,
1NN is used to classify the normalized essays for the target task.

Formally, we are given a set of source tasks P , each with a task-prompt pn and
a corresponding set of labeled essays Spn . For a relevance level i, the corresponding
centroid C⃗i is computed as:

C⃗i =
1∑

pn∈P |Si
pn|

∑
pn∈P

∑
s∈Si

pn

e⃗s − p⃗n (3.4)

The relevance level R(t) for a test essay t is then computed using Equation 3.2 except
that e⃗t is now normalized as e⃗t − p⃗t.

This approach scores the essay based on the aggregated information of the
relevance levels from the source tasks. Nevertheless, an essential piece of information
that can also be considered is the similarity with the target task-prompt. Consequently,
we employed both the scores determined by the nearest centroid and the similarity with
the target task-prompt to assign the final relevance score of the essay. For a test essay t
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and a target task-prompt p′ that has a maximum relevance score of rmax, the similarity
score S(t) is normalized as follows:

S(t) = ϕ(e⃗t, p⃗
′) ∗ rmax (3.5)

where ϕ is the similarity function with a [0 − 1] output range. Then, the final
score R∗(t) of the test essay t is computed as the average between the two scores:

R∗(t) =
1

2
(R(t) + S(t)) (3.6)

The fine-tuning process in the cross-task scenario follows the same setup for the
task-specific scenario. The only difference lies in the essays’ representations, which are
made task-independent by subtracting the embedding vector of the task-prompt from the
anchor, positive, and negative examples during the fine-tuning process.

Our general approach for the cross-task scenario is hereafter denoted by a prefix
ct amended to the pre-trained or fine-tuned model names for Graded Relevance.

With that being said, in the chapter we discussed our approach in two different
settings, task-specific and cross-task. The next chapter discuss how we applied ProtoGR
to English essays in Chapter 4 and Arabic essays in Chapter 5.
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CHAPTER 4: EXPERIMENTAL EVALUATION ON ENGLISH ESSAYS
4.1. Experimental Setup

In this section, we introduce the setup used to conduct our experiments for the
English dataset. We first discuss the encoder selection criteria (section 4.1.1). Then,
we present the dataset we used for evaluation (section 4.1.2) and the specific evaluation
measure for the AES task (section 4.1.3). We next discuss the hyper-parameters we used
for fine-tuning (section 4.1.4), before we list the baselines with which we compare our
work for the task-specific (section 4.1.5) and cross-task (section 4.1.6) approaches.

4.1.1. Encoder Criteria

As previously discussed, selecting an appropriate encoder is crucial, as the
scoring mechanism depends on the essay’s representation. To evaluate the impact of
various encoders on our task, we included a diverse set of dense retrieval and non-
retrieval encoders for comparison.

Several criteria guided our encoder selection. First, we included encoders from
three distinct categories: retrieval, text similarity, and universal embeddings. Second,
within each category, we prioritized models that performed well in their respective areas.
Finally, we also considered models that performed well on the Hugging Face MTEB
leaderboard1. With that being said, the encoders selected from the retrieval category
are: Contriever, BGE and BGE-M3. The encoders selected from text similarity are
SimCSE, GTE and E5, and finally, the encoders selected from the universal encoders
are: BERT and RoBERTa. These chosen pre-trained models were then tested on our
task using the proposed approach, after that we selected the top-performing models for
further analysis.

4.1.2. Dataset

We employed the commonly-used Automated Student’s Assessment Prize (ASAP)2

and ASAP++ [6] datasets. ASAP dataset comprises 8 different tasks T , where each task
has a set of written essays. The original ASAP dataset contains the holistic scores for
all tasks and the trait scores only for T7 and T8. ASAP++ extends ASAP by scoring the
essay traits for tasks T1-T6. To test our approach, we used the tasks that have annotations
for the relevance trait, namely, T3, T4, T5, and T6. Table 4.1 summarizes the dataset we
used in our experiment. Following previous work, for fair comparison, we use 5-fold
cross-validation with the same folds used by Taghipour and Ng [40] for task-specific
models.

Table 4.1. ASAP++ relevance trait tasks.

Task Relevance Levels Ave. Length (words) #Essays
T3 0-3 100 1726
T4 0-3 100 1772
T5 0-4 125 1805
T6 0-4 150 1800

1https://huggingface.co/spaces/mteb/leaderboard
2https://www.kaggle.com/c/asap-aes
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4.1.3. Evaluation Measure

For evaluating our approach, we used Quadratic Weighted Kappa (QWK) [41],
which is a widely used measure for AES. QWK measures the agreement between the
scores of two raters, in our case, the human rater and the system. QWK is suitable for
this task as it weighs the degree of disagreement between the raters, which is what we
want as the scores are ordered.

4.1.4. Implementation and Hyper-parameters

All of our experiments are carried out with the Pytorch library.3 We use the
available checkpoint accessible on Hugging Face’s model hub for Contriever4, BGE5,
BGE-M36, SimCSE7, GTE8, E59, BERT10 and RoBERT11.

For the hyper-parameter settings, we used the AdamW optimizer with a fixed
learning rate of 1e-6 and a batch size of 16 for all models, except for BGE-M3, where
we reduced the batch size to 8 due to limited GPU memory. When using 5 negative
examples per score level, the dataset size increases, hence, we evaluate every 100 steps,
and apply early stopping with a patience of 10 epochs (i.e., 1,000 steps). Otherwise,
we evaluated at the end of each epoch and applied early stopping with a patience of
10 epochs. For the cross-prompt setting, we use the same hyper-parameters. However,
we randomly select one task as the development set to tune the number of epochs, then
retrain using all source tasks with the tuned epoch setting.

4.1.5. Task-specific Baselines

We employed the following baselines based on their approach diversity and their
performance:

• Feature-based: Mathias and Bhattacharyya [3] utilized multiple models initially
designed for holistic scoring. One of their baselines is a feature-based model
described in [6].

• Attention-based Neural Model [3]: This model, which is based on the work
of Dong, Zhang, and Yang [7], achieved the best results for the relevance trait.
Hence, we use it as the SOTA baseline.

• Multi-task Neural Model [10]: This work developed a multi-task setup for holistic
scoring by scoring the traits as sub-tasks. In a specific experiment, individual traits
were set as the primary task for prediction, utilizing the other traits alongside the
holistic score as sub-tasks. The reported results provided an average score across
all tasks. As such, our comparison will be based on this averaged metric.

3https://pytorch.org/
4https://huggingface.co/facebook/contriever
5https://huggingface.co/BAAI/bge-base-en-v1.5
6https://huggingface.co/BAAI/bge-m3
7https://huggingface.co/princeton-nlp/sup-simcse-roberta-base
8https://huggingface.co/thenlper/gte-base
9https://huggingface.co/intfloat/e5-base-v2

10google-bert/bert-base-uncased
11https://huggingface.co/FacebookAI/roberta-base
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• LLM-based Model: This work is one of the few successful applications of LLMs
in AES [28]. The authors fine-tuned the T5 model for task-specific scoring.
However, as mentioned earlier, their model was trained on all tasks combined,
which does not algin with the task-specific setting.

• RL-based Model: The authors in [28] extended their work to use QWK as the
optimization metric using RL[30]. The training data issue, however, persist in
this baseline as well.

4.1.6. Cross-task Baselines

We adopted the following baselines based on the same criteria of task-specific
baselines:

• Vanilla Baseline: To test the idea of removing topic information by subtracting
the encoded task-prompt from the encoded essays, we developed a baseline model
that uses the same approach for cross-task setup but without removing the topic
information from the essays’ representations. We denote this baseline as the
“vanilla” cross-task approach ctv-pt-ProtoGR.

• PMAES [18]: This recent work developed a prompt-mapping contrastive learning
strategy to capture the shared information between the source and target tasks. To
score the traits, a different output layer is used for each trait.

• ProTACT [17]: This work proposed a shared model to learn the prompt-aware
essay representations. Subsequently, trait-specific layers were introduced on top
of the shared layers to score the individual traits.

• Feature-based [32]: This work utilized different set of features with a simple
neural model achieving the best performance on the relevance trait specifically.

4.2. Results and Discussion

In this section, we present and discuss the results of our experiments addressing
the four research questions. We first illustrate the performance of the pt-ProtoGR model
comparing it with SOTA baselines. Then discuss the fine-tuning process and results.
Next, we discuss the performance of pt-ProtoGR and ft-ProtoGR in few-shot settings.
Finally, we show cross-task scenario performance.

4.2.1. Effectiveness of Out-of-the-Box Pre-trained Encoders on English Essays (RQ1)

4.2.1.1. Encoders Evaluation

The first stage is to choose strong encoders for further analysis. As previously
mentioned, we chose encoders from three categories: dense retrieval, text similarity,
and universal encoders. Table 4.2 presents these selected encoders and their respective
results on the development set. Notably, almost all encoders demonstrated strong
performance, which was unexpected given that these models were not trained on student
essays. This observation raises an intriguing question: Is this strong performance due
to the relevance trait we are scoring, potentially aligning with relevance-related tasks
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Table 4.2. The selected encoders from each category and their relevance trait QWK
performance on the development set.

Model type Model T3 T4 T5 T6 Ave

dense retrieval
Contriever 0.624 0.667 0.608 0.661 0.640
BGE 0.534 0.595 0.527 0.560 0.554
BGE-M3 0.658 0.654 0.602 0.637 0.638

Text similarity
SimCSE 0.643 0.688 0.661 0.648 0.660
GTE 0.516 0.584 0.491 0.542 0.533
E5 0.598 0.662 0.536 0.610 0.602

Universal encoder
BERT 0.597 0.679 0.572 0.611 0.615
RoBERTa 0.640 0.675 0.634 0.529 0.619

these models were originally trained on, or does it stem from a combination of method
and encoder quality?

To explore this question, we selected a distinct trait less aligned with relevance-
based models, namely, the organization trait. Table 4.3 displays the results. As an-
ticipated, the performance on organization is weaker than on relevance, likely because
these models were not trained to capture the structural aspects of a text. However, it is
interesting to observe that universal encoders, specifically BERT and RoBERTa, which
were not designed for relevance tasks, outperformed others. Furthermore, they were
followed by their fine-tuned versions, Contriever and SimCSE, respectively.

Table 4.3. Evaluating the pre-trained encoders on the Organization trait. The reported
values are QWK performance on development set.

Model type Model T1 T2 T7 T8 Ave

dense retrieval
Contriever 0.520 0.556 0.490 0.226 0.448
BGE 0.334 0.369 0.393 0.070 0.291
BGE-M3 0.413 0.417 0.540 0.092 0.365

Text similarity
SimCSE 0.458 0.476 0.589 0.152 0.419
GTE 0.389 0.402 0.395 0.129 0.329
E5 0.429 0.475 0.486 0.160 0.388

Universal encoder
BERT 0.520 0.583 0.557 0.228 0.472
RoBERTa 0.601 0.572 0.554 0.255 0.496

This simple experiment underscores two important considerations for researchers
designing an AES system. First, each trait, especially distinct ones, should ideally be
modeled independently, as different traits may require different representations and
strategies. Second, it is crucial to carefully select the method for representing essays,
especially when using pre-trained models. Certain models may be inherently better
suited to capturing specific aspects of writing, and a model’s original training can
strongly influence its effectiveness on different traits. Future research might focus on
evaluating the suitability of various pre-trained models for each trait and developing
tailored approaches for each trait.
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With that in mind, moving forward, we selected the best-performing models,
namely, SimCSE, Contriever, and BGE-M3, for further analysis. Additionally, we also
test BERT and RoBERTa to compare them with their respective fine-tuned version
Contriever and SimCSE.

4.2.1.2. Performance Against SOTA Models

We test the selected encoders on the test set to compare their performance with
other state-of-the-art models. Table 4.4 compares the encoders against the baseline
models. Remarkably, this simple and straightforward idea achieved an average QWK
of 0.661 with an out-of-the-box SimCSE model, which is quite effective for the AES
task. It even performs consistently across tasks. Furthermore, it clearly outperforms the
feature-based baseline, with about 9-points lag behind the SOTA model.

Table 4.4. Performance (in QWK) of our pre-trained ProtoGR on the test sets,
compared to the baselines. Baseline results are reported from their respective papers.

Model T3 T4 T5 T6 Ave.
Feature-based [3] 0.575 0.636 0.639 0.581 0.608
Multi-task NM [10] - - - - 0.730
Attn-based NM [3] 0.683 0.738 0.719 0.783 0.731
LLM-based [28] - - - - 0.751*
RL-based [30] - - - - 0.754*
pt-Contriever 0.633 0.673 0.633 0.693 0.658
pt-BGE-M3 0.657 0.647 0.598 0.636 0.635
pt-SimCSE 0.642 0.685 0.658 0.659 0.661
pt-BERT 0.593 0.678 0.573 0.607 0.613
pt-RoBERTa 0.640 0.674 0.633 0.534 0.620

As observed before, all five encoders performed fairly well, suggesting that their
embedding spaces are effective for this task. This performance highlights the versatility
of these encoders and underscores the potential of our proposed framework.

4.2.2. Effect of Fine-tuning Dense Encoders on English Essays (RQ2)

With the encouraging performance of the pre-trained models shown in the pre-
vious experiment, we then turn to examining the performance of these models after
fine-tuning.

4.2.2.1. Fine-tuning Process of ProtoGR on English Essays

For fine-tuning our models, we have 4 hyper-parameters: the similarity function,
the loss function, the selection criteria of negative training samples, and the number of
negative training samples per relevance level. As it is impractical to tune those hyper-
parameters for each model together with a grid search, we tune one at a time while fixing
the others in a sequential series of experiments A through D.
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Additionally, we make the following assumption: the similarity function, selec-
tion criteria for negative training samples, and the number of negative training samples
per relevance level are model-independent. In other words, once an optimal setting for
these hyper-parameters is found for one model, we apply the same configuration to all
other models. However, the loss function is expected to be model-dependent and can
significantly affect the performance of the model, so it is tuned separately for each model
in experiment D.

Table 4.5 shows all experiments with different variations conducted with Con-
triever on the development sets and using the PSCE loss function. After tuning model-
independent hyper-parameters, we tune the loss function with the best configuration
from the previous step for all models.

Table 4.5. Contriever performance (in QWK) of different variations of ft-ProtoGR on
the development sets. Sl stands for sample per score level.

Configuration Performance
Exp. Similarity fn. Neg. Sampling Neg. Sl T3 T4 T5 T6 Ave.

A
Cosine All levels 1 0.718 0.763 0.732 0.789 0.751

Euclidean All levels 1 0.710 0.715 0.798 0.727 0.737

B
Cosine Easy levels 1 0.675 0.727 0.788 0.724 0.728
Cosine Hard levels 1 0.658 0.683 0.665 0.659 0.666

C

Cosine All levels 2 0.720 0.760 0.792 0.738 0.752
Cosine All levels 3 0.726 0.766 0.801 0.737 0.758
Cosine All levels 4 0.722 0.775 0.797 0.738 0.758
Cosine All levels 5 0.726 0.774 0.739 0.801 0.760

Firstly, we tested two similarity functions, cosine similarity and Euclidean dis-
tance, selecting negative samples from all relevance levels, and choosing only 1 negative
sample per relevance level. Cosine similarity is a metric frequently utilized for mea-
suring the similarity between two vectors irrespective of their magnitudes. In contrast,
Euclidean distance calculates the straight-line distance between two points, offering a
different perspective on the similarity. The results of experiment A show the superiority
of the cosine similarity function, so we use it in the rest of the experiments.

We then examine, in experiment B, the effect of the other ways of selecting
negative samples (Easy and Hard levels), which differ in what relevance levels to choose
the samples from. The results revealed that using Easy negative samples exhibited better
performance, as the model was better able to learn from them to distinguish between
the different relevance grades; however, combining both Easy and Hard levels (which
comprise the All levels option, shown in experiment A) was even better, indicating that
they are complementary and both are needed to learn a better model, and highlighting
the benefit of providing the model with contrastive examples from various levels.

Experiment C examines the effect of training with different numbers of negative
samples per relevance level. As expected, the more negative samples we include, the
better the performance. However, the performance was slightly improving from 0.751
(with one sample per level) to 0.76 (with 5 samples per level). While this points to the
importance of increasing the size of our training set, increasing it further incurs further
cost in terms of training time and computing resources.
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Given the above findings, we settle on the following configuration for the final ft-
ProtoGR model: cosine similarity as the similarity function, selecting negative samples
from all relevance levels, and drawing 5 negative samples per each level.

After identifying the best model-independent hyperparameters, we tested two
loss functions for each encoder: its original loss function and the PSCE loss function.
Table 4.6 shows the results on the development set for the three encoders. Surprisingly,
PSCE loss consistently performed better than the model’s original loss. This discrepancy
may be closely tied to the nature of our problem reformulation. The later loss function
has shown effectiveness for retrieval tasks, where the goal is to rank relevant documents
higher than non-relevant ones. This aligns better with our problem setup.

Table 4.6. Experiment D results on development set of tuning the loss function for the
three encoders.

Loss Model T3 T4 T5 T6 Ave.

Original Loss
Contriever 0.658 0.693 0.710 0.668 0.682
SimCSE 0.662 0.704 0.688 0.684 0.684
BGE-M3 0.741 0.786 0.717 0.790 0.758

PSCE
Contriever 0.726 0.774 0.739 0.801 0.755
SimCSE 0.749 0.806 0.743 0.792 0.773
BGE-M3 0.729 0.776 0.748 0.786 0.760

4.2.2.2. Performance of ft-ProtoGR Against SOTA Models

Table 4.7 shows the performance of ft-ProtoGR on the test sets, contrasting it
with the baselines. While we report the performance of LLM-based [28] and RL-based
[30] models, we do not consider them as baselines since the comparison is not entirely
fair. As mentioned earlier, Do, Kim, and Lee [28] and Do, Ryu, and Lee [30] used
all tasks in their training sets, which does not align with the literature’s definition of
task-specific scoring.

BGE-M3, SimCSE, and RoBERTa achieved an average score of 0.755, outper-
forming the previous SOTA model by nearly two points and establishing a new SOTA
for the problem of graded relevance scoring of written essays. Moreover, they were also
on par with the baselines presented in [28], [30].

Several interesting conclusions can be drawn from this table. First, BERT and
its retrieval-model fine-tuned version, Contriever, show almost identical performance.
The same could be said about RoBERTa and SimCSE. This suggests that regardless of
their previous training, these models converged to similar results after fine-tuning and
weight adjustment, even though Contriever initially outperformed BERT when tested in
its pretrained state. Second, contrastive learning proved to be effective, as ft-ProtoGR-
BERT outperformed regressor-BERT.

These findings encourage utilizing dense retrieval and similarity-based models
for downstream non-retrieval tasks, wherein a simple problem reformulation with 1NN
can achieve impressive performance.

Our best experimented setup is constrained by allowing only up to 5 negative
samples per relevance level per anchor essay. However, it is worth noting that we have
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Table 4.7. Performance (in QWK) of ft-ProtoGR on the test sets, compared to the
baselines.

Model T3 T4 T5 T6 Ave.
Feature-based [3] 0.575 0.636 0.639 0.581 0.608
Multi-task NM [10] - - - - 0.730
Attn-based NM [3] 0.683 0.738 0.719 0.783 0.731
Regressor-BERT 0.676 0.709 0.688 0.776 0.712
LLM-based [28] - - - - 0.751*
RL-based [30] - - - - 0.754*
ft-ProtoGR-Contriever 0.704 0.766 0.707 0.785 0.741
ft-ProtoGR-BGE-M3 0.734 0.777 0.727 0.781 0.755
ft-ProtoGR-SimCSE 0.735 0.779 0.731 0.776 0.755
ft-ProtoGR-BERT 0.718 0.758 0.720 0.775 0.743
ft-ProtoGR-RoBERTa 0.728 0.783 0.716 0.794 0.755

not explored the optimal scenario of including all possible negative examples for each
anchor essay. We argue that doing so could potentially achieve even greater performance
improvements.

4.2.2.3. Visualizing ProtoGR on English Essays

Figure 4.1. SimCSE 2D Visualization of the training set of each task, fold 0, before
and after fine-tuning using UMAP.

In Figure 4.1, we illustrate the impact of fine-tuning SimCSE. These visualiza-
tions pertain to the training set of each task. Employing the 2D UMAP dimensional
reduction method [42], we plotted the encoded essays in a scatter plot for analysis. The
figures at the top show how the pre-trained SimCSE encodes the essays. Despite a some-
what mixed arrangement of essays with varying scores, distinct groups corresponding to
each relevance level are somewhat discernible. However, after fine-tuning, a clearer or-
dinal hierarchy emerges between relevance levels, with distinct clusters forming for each
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Figure 4.2. Contriever 2D Visualization of the training set of each task, fold 0, before
and after fine-tuning using UMAP.

score. This refinement is particularly prominent in tasks 4 and 6. Notably, essays with a
score of 0 consistently form their own distinct cluster, making them more distinguishable
compared to scores 1 and 2. Finally, it is observable that the fine-tuning process not
only enhances score-level distinctions but also contributes to the compactness of each
cluster of essays.

It was also interesting to observe how the lowest-performing model, Contriever,
represented the essays and compare it to the best-performing model. Figure 4.2 shows the
essay representations after fine-tuning. Notably, Contriever was able to establish an or-
dinal hierarchy between relevance levels. However, the clusters are not as well-separated
as those produced by SimCSE, which could explain Contriever’s lower performance.

4.2.2.4. Error Analysis

Figure 4.3 the confusion matrices for SimCSE predictions, highlighting patterns
of prediction accuracy and errors. Overall, the model demonstrates the ability to
distinguish essays with extreme scores, particularly score 0, which consistently forms
well-defined clusters with minimal confusion. However, intermediate scores, such as
1 and 2, exhibit more overlap, leading to notable misclassifications between adjacent
levels. This also aligns with the observations from figure 4.1. Additionally, this pattern
is reflected in the F1 scores for each score level across different tasks, as summarized in
Table 4.8.

Table 4.8. F1 score for each score level across the different tasks using SimCSE

S0 S1 S2 S3 S4
T3 0.68 0.48 0.62 0.49 -
T4 0.81 0.47 0.54 0.50 -
T5 0.58 0.43 0.53 0.43 0.44
T6 0.71 0.47 0.67 0.43 0.32
Ave 0.70 0.46 0.59 0.46 0.38
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Upon further investigation, we hypothesize that the confusion between scores 1
and 2 could be due to the ambiguity in their descriptions. Specifically, the criteria for
these scores might be unclear for humans. The descriptions are as follows:

Score 2: The response shows a good understanding of the meaning of the text
and question, and occasionally wanders off topic.

Score 1: The response shows a misreading of the text or question, or consistently
wanders off topic.
Both score levels can include responses that ”wander off topic;” however, it is unclear
what degree of wandering corresponds to a score of level 1 or 2. In contrast, score
0 and the highest score (i.e., score 3 or 4) are more easily distinguishable. Score 0
represents a completely irrelevant response, while the highest score indicates a response
of exceptional quality.

Figure 4.3. Confusion matrix of ft-ProtoGR-SimCSE predictions of the test set.

While score level 0 was the most distinguishable overall, an interesting pattern
emerged where score level 2 performed exceptionally well. This led us to examine the
distribution of score levels in the training set, as shown in Table 4.9. Indeed, in nearly
all tasks, score level 2 represented the highest percentage of the data. The issue of data
imbalance has not been addressed in previous AES research, as much of the work treats
the problem as a regression task. However, this observation suggests that data imbalance
could be limiting further performance improvements.

Table 4.9. Data distribution for the relevance trait in fold 0.

S0 S1 S2 S3 S4
T3 13.7% 33.8% 42.5% 9.90% -
T4 32.9% 31.2% 28.4% 7.40% -
T5 8.10% 21.1% 34.7% 29.2% 6.80%
T6 12.6% 24.7% 41.5% 18.8% 2.40%

From the above analysis, we encourage future research that explores advanced
loss function designs, develops score-difference-aware training strategies, or investigates
the impact of data imbalance in the AES problem to address these specific challenges.
Additionally, it is crucial to emphasize that developing a robust AES model requires a
clear and concise rubric created by experts. Without such a rubric, score levels may
become ambiguous for evaluators, leading to assessments driven by subjective feelings
rather than objective criteria.
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4.2.3. Few-shot Learning

In earlier scenarios, we assume many labeled essays from the same task are
available (more than a thousand in the ASAP++ dataset). While this is a common setup,
it is indeed impractical in educational contexts and poses a considerable challenge, as it
requires time-consuming manual grading for any new task. Few-shot learning alleviates
this constraint by requiring only a few graded essays to effectively train the model,
making our approach more feasible.

To that end, we study the performance of our pre-trained and fine-tuned models
when trained within a k-shot setup, where k is the number of labeled essays per relevance
level that are available for training for a given task. We varied k from 5 to 30 with a
step of 5. As the number of shots increases, we augmented the initial set by randomly
sampling additional 5 essays per relevance level, creating comparable subsets across
experiments. We then test the trained models on the standard test set of the task. To
improve robustness and mitigate the influence of chance, we repeated the entire process
5 times and reports the average performance over the 5 runs. For this experiment, we
employed SimCSE model.

Figure 4.4 illustrates the performance of both pt-ProtoGR and ft-ProtoGR with
the few-shot setup compared to the full-shot setup (i.e., training with all labeled exam-
ples).

Figure 4.4. Performance of our models with the k-shot setup compared to the full-shot
setup on the test sets.

As anticipated, a general observation reveals that increasing k positively corre-
lates with improved performance, and the fine-tuned models generally outperform their
pre-trained counterparts.

Most notably, the average performance of ft-ProtoGR with 30 shots trails by
approximately only 9 points compared to the full-shot setup; it is crucial to consider that
30 shots imply only 150 labeled essays (assuming 5 relevance levels), which constitutes
less than 15% of the full training set that consists of 1000+ essays, reducing the labeling
cost by more than 85% while sacrificing about 9% of the performance. This clearly
has the potential to control the trade-off between practicality and performance; it indeed
opens the door for future efforts toward narrowing the performance gap.

Interestingly, we also noticed that fine-tuning with above 10 shots per relevance
level was sufficient to reach a similar performance as the pre-trained model when trained
with the full set. This highlights the power of the our model when fine-tuned with few
shots.
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All in all, our models yielded promising performance in the few-shot scenario,
though the rule of thumb of having more data for better performance remains. Never-
theless, our models showcase commendable overall performance even with a fraction of
the original data, emphasizing the practicality of our approach.

4.2.4. Cross-Task Scoring (RQ3)

What if we do not have any labeled essays for the test task? Can we leverage
labeled essays for other tasks to learn a model that can be used to score essays written for
a new task for which we do not have any labeled essays? This is exactly the cross-task
scenario.

For this scenario, the setup goes as follows. For each target (i.e., test) task in the
dataset, the 3 other tasks (along with their labeled essays) are used for training. Due to
the discrepancy of relevance levels across tasks (T3 and T4 range from 0 to 3, while T5
and T6 range from 0 to 4), centroids for relevance levels 0 to 3 are computed from all of
the 3 training tasks, while the centroid for relevance level 4 is computed only from T5
and/or T6. In these experiments, the training set size increases significantly. Due to our
resource limitations, we omitted the BGE-M3 model, as it has a larger size.

We experimented with 3 variants of ProtoGR for the cross-task scenario. The first
is the vanilla cross-task model, denoted by the prefix ctv, which directly uses the centroids
of the essays’ vectors as done for the task-specific scenarios. The second is the task-
independent version denoted by the prefix cti, in which we made the essay vectors (thus
the centroids) task-independent by semantically “disentangling” their corresponding
task-prompts. The third is an extended version of the second that is denoted by the
prefix cts, in which we also involve the similarity with the target task-prompt when we
score a given test essay. We tried the second and third variants with both pt-ProtoGR
and ft-ProtoGR models. For fine-tuning, we used the same hyper-parameters used in
the task-specific experiments.

Figure 4.5. Cross-task results on test-set. GAPS and Feature-based baseline have the
exact reported QWK.

Figure 4.5 shows the performance of our model variants compared with state-
of-the-art (SOTA) baselines in the cross-task setup. Several key observations can be
made:
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pt-ProtoGR Setup Within the pt-ProtoGR setting, cti achieved the best perfor-
mance, followed by ctv and cts. Notably, the pt-ProtoGR-RoBERTa model performed
on par with the PMEAS baseline under the cti configuration. The stronger results of
cti over ctv in Contriever, SimCSE, and RoBERTa support the idea that removing the
“topic” from essays makes them more task-prompt independent, thereby making them
better suited to cross-task scenarios.

ft-ProtoGR Setup Fine-tuning boosted performance for most models, indicating
that the model learned to cluster similarly scored essays together regardless of their
specific tasks. However, RoBERTa did not improve, and even decreased in performance,
under the ctv and cti configurations, suggesting that not all encoders respond equally
to fine-tuning. This underscores the importance of carefully selecting both the encoder
and the fine-tuning strategy for a given task. Notably, Contriever surpassed the PMEAS
baseline in the cts setup. Although Contriever, being a retrieval model, was the least
effective in the task-specific setting, its strengths were more evident in cross-task AES.

Despite these findings, none of our models outperformed the GAPS SOTA model.
The best-performing variant, cts-Contriever, still lagged by two points.

In summary, we evaluated ProtoGR in two main settings: task-specific and
cross-task. In the task-specific setting, all of our encoders outperformed the SOTA, with
three ft-ProtoGR encoders exceeding the SOTA by 2 points. In the cross-task setting,
Contriever outperformed one of the baselines but lagged behind the SOTA model by 2
points. We also observed the impact of pt-ProtoGR and ft-ProtoGR when working with
a limited number of essays.

In the next chapter, we will present the experimental evaluation on Arabic essays
in both task-specific and cross-task setups and compare the results to the baseline
models.
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CHAPTER 5: EXPERIMENTAL EVALUATION ON ARABIC ESSAYS
5.1. Experimental Setup

This section outlines the experimental framework for the Arabic language. Sec-
tion 5.1.1 details our encoder selection criteria for the Arabic language. Section 5.1.2
describes the dataset and its division for experiments. Section 5.1.3 details the eval-
uation measures used. Finally, Sections 5.1.4 and 5.1.5 present the hyper-parameter
settings and baseline details, respectively.

5.1.1. Encoder Selection

For Arabic data, due to the limited Arabic-specific encoders, we choose only one
encoder from each category, mContriever1, Multilingual-E52, and XLM-RoBERTa3

from retrieval, text-similarity and universal embeddings encoders respectively. Similar
to the English encoders selection criteria, we also choose encoders that perform well on
the Hugging Face MTEB leaderboard4 at the time of our experiments.

5.1.2. Arabic Data

For the Arabic data, we use an in-house dataset of 1,275 essays across 8 different
tasks, written by native first-year university students under test-like conditions. Each
essay is annotated across 7 traits including relevance. The scoring follows a standardized
rubric, with the relevance trait assessed on a scale of 0 to 2, with 1-point increments.
The annotation process was conducted by two primary Arabic language specialists,
with a third annotator available to resolve any disagreements. Annotators were selected
with extensive teaching experience and underwent several training sessions to ensure
understanding of the rubric and consistency throughout the annotation process. Table
5.1 provides a breakdown of the prompts featured in our Arabic dataset. Figure 5.1
shows the distribution of relevance scores across the eight different tasks.

Table 5.1. Arabic Dataset statistics

Task Type Essays Ave. Len (words)
T1 Explanatory 215 137
T2 Persuasive 210 150
T3 Persuasive 115 501
T4 Persuasive 80 474
T5 Explanatory 184 129
T6 Explanatory 135 132
T7 Persuasive 195 122
T8 Persuasive 141 129

For task-specific scoring, we perform 5-fold cross-validation, using one fold for
testing, another for development, and the remaining three for training. The experiment is

1https://huggingface.co/facebook/mcontriever
2https://huggingface.co/intfloat/multilingual-e5-small
3https://huggingface.co/FacebookAI/xlm-roberta-base
4https://huggingface.co/spaces/mteb/leaderboard
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Figure 5.1. Distribution of relevance scores across different tasks in the Arabic dataset.

repeated for each testing fold, and we report the average results across all folds. Similar
to the English experiments, hyper-parameters are selected based on the best development
set results across all folds and tasks.

For cross-task scoring, we use leave-one-task-out cross-validation, where each
task is treated as a test set while the remaining tasks are used for training. For each
encoder, we apply the best hyper-parameters obtained from task-specific scoring.

5.1.3. Evaluation Measures

For Arabic data evaluation, we use QWK, the most common metric for assessing
agreement between human annotators and systems. However, it has limitations, includ-
ing a need for a large sample size, and its sensitivity to the score scale [43]. To address
these limitations, in some cases, we also use the Root Mean Square Error (RMSE), a
metric commonly used for ordinal classification tasks [44] similar to predicting score
levels in AES tasks. Reporting both QWK and RMSE aims to more reliably evaluate
the quality of the tested models.

5.1.4. Implementation and Hyper-parameters

We implement our experiments using the PyTorch library and train the models
on Nvidia A10-24Q and Nvidia RTX A6000 GPUs. Optimization is performed using
the AdamW optimizer, with a fixed batch size of 16. For hyper-parameter tuning, we
conduct a grid search over learning rates (2e−5, 3e−5, and 5e−5) and the number of
trainable layers (3, 6, or none for full fine-tuning), the rest of the hyper-parameters
(distance function, number of negative examples per score level) are tuned sequentially.
More details are provided in upcoming sections. In task-specific scoring, models are
trained for 100 epochs, and the best checkpoint is selected based on the highest QWK
score on the development set. For cross-task scoring, we train the models for five epochs
and employ the best settings we got from task-specific experiments for each encoder
separately.

5.1.5. Baselines

To validate our results, we compare with the following baselines for both task-
specific and cross-task scoring:
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Table 5.2. Performance (in QWK) of our pre-trained ProtoGR on the Arabic essays
test set, compared to the baselines.

Model T1 T2 T3 T4 T5 T6 T7 T8 Ave.
RF 0.079 0.141 -0.121 0.064 0.472 0.437 0.599 0.280 0.244
SVM 0.080 0.230 -0.126 0.070 0.441 0.435 0.605 0.319 0.257
Reg-mContriever 0.107 0.056 0.187 0.214 0.521 0.430 0.617 0.292 0.303
Reg-Multilingual-E5 0.162 0.047 0.230 -0.009 0.606 0.318 0.612 0.149 0.264
Reg-XLM-RoBERTa 0.294 0.113 0.260 0.195 0.465 0.574 0.587 0.118 0.326
pt-mContriever 0.329 0.158 0.321 0.350 0.530 0.456 0.476 0.178 0.350
pt-Multilingual-E5 0.329 0.243 0.347 0.181 0.565 0.464 0.607 0.265 0.375
pt-XLM-RoBERTa 0.269 0.209 0.186 0.229 0.570 0.563 0.637 0.291 0.369

1. Feature-Based Models: We use a subset of features from Alqahtani and Al-Saif
[23] to train Support Vector Machine (SVM) and Random Forest (RF) models.
These features, categorized as surface, syntactic, and lexical, are detailed in Table
??. Appendix A.1 provides implementation details and describes the hyper-
parameter tuning process.

2. Regression Fine-Tuning: We fine-tune the selected encoders, namely, XLM-
RoBERTa, mContriever, and Multilingual-E5, for relevance score prediction by
adding a regression head to each model. We refer to these models as Reg-X
(e.g., Reg-mContriever). Implementation details and hyperparameter tuning are
provided in Appendix A.2.

5.2. Results and Discussion

In this section, we present and analyze the results of our experiments on Arabic
essays, addressing the four research questions. We begin by showcasing the performance
of the pt-ProtoGR models in comparison to our baselines. Then, we examine the fine-
tuning process and its outcomes. Lastly, we explore their effectiveness in a cross-task
scenario.

5.2.1. Effectiveness of Out-of-the-Box Pre-trained Encoders on Arabic Essays (RQ1)

The first research question we address is the performance of the chosen pre-
trained encoders. Unlike English, for which we selected multiple encoders, here we
chose one encoder from each category, as noted earlier. Consequently, we evaluated
them directly on the test set and compared their results with our baselines. Table 5.2
presents pt-ProtoGR model performance for Arabic essays against feature-based and
regression fine-tuned baseline models (Reg-X).

A key observation is the relatively lower scores compared to the performance
on English essays (where QWK exceeds 0.7), underscoring the complexity of this
data, particularly for the relevance trait. Despite this, all pt-ProtoGR encoders, out-
of-the-box, outperformed our trained baselines by a significant margin. For instance,
the top-performing encoder, Multilingual-E5, surpassed the strongest regression fine-
tuned baseline, XLM-RoBERTa, by approximately 5 points in QWK and exceeded the
strongest feature-based model, SVM, by 11 points.
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As noted earlier, QWK has limitations, especially in cases of agreement imbal-
ance [43], which may explain the relatively lower QWK scores. Consequently, we also
report the RMSE measure. Figure 5.2 illustrates the performance of the pt-ProtoGR
model and the baselines in terms of RMSE. On average, the pt-ProtoGR encoders
achieved an RMSE of 0.57, indicating that the typical error is only 0.57 points. Interest-
ingly, although the pt-ProtoGR models consistently achieved higher QWK values, the
baselines recorded lower RMSE scores.

This discrepancy can be explained by the different focuses of the metrics. QWK
evaluates agreement adjusted for chance and weight errors by their squared distance,
emphasizing ordinal consistency. In contrast, RMSE measures the raw magnitude of
errors. A model that makes smaller, more frequent errors (e.g., confusing 0 with 1) may
exhibit a lower RMSE yet fails to preserve critical ordinal rankings, thereby reducing its
QWK. Hence, pt-ProtoGR makes better ordinal predictions, while maintaining relatively
lower RMSE values.

Figure 5.2. Results of pt-ProtoGR with RMSE as the evaluation metric.

5.2.2. Effect of Fine-tuning Dense Encoders on Arabic Essays (RQ2)

Now, we examine the performance of the ft-ProtoGR encoders. In this section, we
first introduce the fine-tuning process for the Arabic essays, then we show its performance
against pt-ProtoGR and the baselines.

5.2.2.1. Fine-tuning Process of ProtoGR on Arabic Essays

For fine-tuning dense encoders on Arabic essays, we tune four hyper-parameters:
learning rate, number of trainable layers, similarity function, and number of negative
examples per score level. The type of negative examples is not applicable to the Arabic
relevance trait, as it contains only three score levels. All experiments employ the PSCE
loss function consistently.
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Table 5.3. ft-ProtoGR performance with different hyper-parameter settings on the
development set. Sl stands for sample per score level.

Exp. Model Similarity fn. Neg Sl. QWK Ave.

A

mContriever cosine 1 0.509
Multilingual-E5 cosine 1 0.553
XLM-RoBERTa cosine 1 0.513
mContriever euclidean 1 0.498
Multilingual-E5 euclidean 1 0.526
XLM-RoBERTa euclidean 1 0.554

B

mContriever cosine 2 0.506
Multilingual-E5 cosine 2 0.506
XLM-RoBERTa euclidean 2 0.552
mContriever cosine 3 0.497
Multilingual-E5 cosine 3 0.525
XLM-RoBERTa euclidean 3 0.529
mContriever cosine 4 0.501
Multilingual-E5 cosine 4 0.517
XLM-RoBERTa euclidean 4 0.528
mContriever cosine 5 0.501
Multilingual-E5 cosine 5 0.521
XLM-RoBERTa euclidean 5 0.528

We conduct a grid search for learning rate and trainable layers using the values
{2e-5, 3e-5, 5e-5} for learning rate and {3, 6, all layers} for trainable layers. After iden-
tifying the optimal combination, we sequentially tune the remaining hyper-parameters.

The grid search yielded the following optimal configurations: a learning rate
of 2e-5 for all encoders, 6 trainable layers for Multilingual-E5 and XLM-RoBERTa,
and all layers for mContriever. Table 5.3 summarizes Experiment A (identifying the
best similarity function for each encoder) and Experiment B (determining the optimal
number of negative examples per score level). These experiments were conducted using
the best learning rate and layer configurations for each encoder.

For similarity functions, Euclidean distance outperformed cosine similarity
for XLM-RoBERTa, while cosine similarity proved superior for mContriever and
Multilingual-E5 (Experiment A). Notably, increasing the number of negative examples
per score level did not improve performance (Experiment B). Consequently, we retained
one negative example per score level for subsequent experiments, pairing Euclidean dis-
tance with XLM-RoBERTa and cosine similarity with mContriever and Multilingual-E5.

5.2.2.2. Performance of ft-ProtoGR Against Baseline Models

Finally, we evaluate the fine-tuned encoders on the test set. Figure 5.3 compares
their performance against their pre-trained counterparts and baseline models.

Interestingly, unlike the results observed on English essays, ft-ProtoGR on Ara-
bic essays did not yield significant improvements over the pt-ProtoGR baselines. This
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Figure 5.3. ft-ProtoGR performance on Arabic essays against pt-ProtoGR and Arabic
baselines.

finding is intriguing because the models were explicitly trained on Arabic essays during
fine-tuning. The discrepancy may stem from the limited size of the Arabic dataset:
while English tasks averaged approximately 1,800 essays per task, Arabic tasks con-
tained only 200 essays per task on average. This smaller dataset size may not provide
enough diversity and coverage to effectively capture the complexities needed for robust
representation learning.

Furthermore, the marginally higher performance of pt-ProtoGR models could
indicate that their pre-trained multilingual knowledge, acquired from vast and diverse
corpora during initial pre-training, provides a stronger foundation for generalization in
low-data scenarios. In contrast, fine-tuning on a small Arabic dataset may narrow the
model’s focus, reducing its ability to leverage broader linguistic patterns. These results
highlight two critical insights: First, pre-trained models can perform relatively well
without fine-tuning in certain contexts. As demonstrated in previous experiments,
ft-ProtoGR significantly outperformed pt-ProtoGR on English essays, yet this trend did
not extend to Arabic. Hence, the size and linguistic nature of the dataset are crucial
considerations when deciding whether to fine-tune. Second, methodological simplicity
can be surprisingly effective. For instance, although Reg-X is fine-tuned, it did not
significantly outperform any of our models (whether pt-ProtoGR or ft-ProtoGR). By
comparison, our approach, particularly pt-ProtoGR, achieved better results without
requiring any additional fine-tuning.

5.2.2.3. Visualizing ProtoGR on Arabic Essays

Visualizing the encoders in their pre-trained and fine-tuned states can help us get
insights on how the encoders represent the essays. Figure 5.4 depicts the encoders in
both their pre-trained and fine-tuned states.

Interestingly, fine-tuning had a similar effect on Arabic essays as it did on English
essays. Specifically, there is a clear separation between clusters of different score
levels, which is particularly evident in mContriever and Multilingual-E5. However, this
separation was not reflected in the quantitative results. This discrepancy might be due to
the small number of essays, which may have limited the encoder’s ability to capture all
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Figure 5.4. 2D Visualization of the training set of each task in Arabic data set across
different encoders using UMAP.

aspects of essays associated with a particular score. Moreover, upon closer examination
of the best-performing encoder, pt-Multilingual-E5, a pattern emerges: tasks with more
balanced score distributions, specifically T5, T6, T7, and T8, exhibit better QWK
performance and more pronounced clusters. In contrast, for highly imbalanced tasks
such as T1 and T2, there are no clear clusters, and the encoder achieved relatively low
QWK scores. Nevertheless, this visualization encourages further investigation into the
lower QWK performance, especially when more Arabic essays become available.

5.2.3. Cross-Task Scoring (RQ3)

We now turn to the cross-task scenario for the Arabic relevance trait AES.
Following the methodology applied to English essays, we train each encoder using the
optimal hyper-parameters identified in task-specific experiments. We evaluate three
variations of scoring functions: vanilla (ctv), task-independent (cti), and task-similarity
(cts). Figure 5.5 shows the performance of ProtoGR against the baselines.
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Figure 5.5. Performance of pt-ProtoGR and ft-ProtoGR on Arabic essays in the
cross-task scenario against the baselines.

For pt-ProtoGR, the cts scoring function achieves the strongest results with
mContriever and Multilingual-E5, outperforming their ctv and cti counterparts. Notably,
XLM-RoBERTa exhibits distinct behavior, achieving its best performance with the ctv
scoring function. Interestingly, pre-trained Multilingual-E5 paired with cts surpasses
all other pre-trained encoders and the strongest baseline, RF, by a significant margin of
2.1 points.

With ft-ProtoGR, nearly all variants of our method show marginal performance
improvements. For instance, mContriever improves by 13 and 12 points for ctv and
cti, respectively. XLM-RoBERTa demonstrates similar gains, with improvements of
5, 5, and 4 points for ctv, cti, cts respectively. In contrast, Multilingual-E5 shows no
improvement with any scoring function after fine-tuning, suggesting encoder-specific
optimization requirements.

When comparing ft-ProtoGR models to baselines, XLM-RoBERTa with ctv and
cti outperforms nearly all baselines, including its regression-based counterpart, by 2
points. However, mContriever surpasses all baselines, achieving a 2.3-point advantage
over the RF baseline.

These results demonstrate the effectiveness of our method in different settings.
Specifically, ProtoGR achieves SOTA performance using pre-trained Multilingual-E5
with cts, while mContriever shows remarkable gains when fine-tuned and outperforms
all baselines.

These findings highlight two main priorities for future research: leveraging
robust pre-trained encoders such as Multilingual-E5, which excel even with limited
task-specific data, and developing encoder-specific fine-tuning strategies.
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CHAPTER 6: CONCLUSION AND FUTURE WORK
6.1. Conclusion

In this study, we introduced a novel approach for graded relevance scoring of
written essays that leverages dense retrieval, employing several dense encoders from
different categories. For English essays, out of the box, without any fine-tuning, our
method yielded promising results, yet post-fine-tuning, it established a new SOTA
performance for task-specific scenarios. Furthermore, we proposed a simple adjustment
to our approach, eliminating the influence of the task-prompt to enable its adaptability
for cross-task settings, achieving a performance that is on par with SOTA baselines.
Moreover, we showed that our approach exhibited reasonable performance in more
practical scenarios where only few essays are labeled for the target writing task. In
particular, with only 30 graded essays per relevance level, we observed about 9% drop
in performance while saving more than 85% of the manual labor cost.

For Arabic essays, our method achieves strong out-of-the-box performance,
surpassing existing baselines by a 5-point QWK gain. In cross-task scenarios, Pro-
toGR outperforms the strongest baseline by 1 and 2 points when using the pre-trained
Multilingual-E5 with the cts scoring function and the fine-tuned mContriever with both
ctv and cti respectively.

6.2. Publications

6.2.1. Main publications

• Albatarni, S., Eltanbouly, S., & Elsayed, T. (2024, July). Graded relevance scoring
of written essays with dense retrieval. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 1329-1338) [45].

6.2.2. Other publications

• Bashendy, M., Albatarni, S., Eltanbouly, S., Zahran, E., Elhuseyin, H., Elsayed,
T., Massoud, W., & Bouamor, H. (2024, August). QAES: First Publicly-Available
Trait-Specific Annotations for Automated Scoring of Arabic Essays. In Pro-
ceedings of The Second Arabic Natural Language Processing Conference (pp.
337-351).

• Mansour, W. A., Albatarni, S., Eltanbouly, S., & Elsayed, T. (2024, May). Can
Large Language Models Automatically Score Proficiency of Written Essays?.
In Proceedings of the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp.
2777-2786).

6.3. Future Work

This study paves the way for several promising research directions. First, while
our methodology originates from dense retrieval for relevance scoring, its framework
can be extended to assess additional essay traits (e.g., vocabulary, style). For English rel-
evance scoring in cross-task scenarios, current performance gaps suggest opportunities
for refinement. A potential solution could involve designing task-agnostic loss functions
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that explicitly model ambiguity and domain shifts across diverse writing prompts. In
Arabic relevance trait AES, significant room remains to enhance model generalizability.
Future efforts might focus on optimizing encoder fine-tuning strategies for low-resource
languages or incorporating linguistic priors specific to Arabic morphology and syntax.

35



REFERENCES
[1] E. B. Page, “The imminence of... grading essays by computer,” The Phi Delta

Kappan, vol. 47, no. 5, pp. 238–243, 1966.
[2] Z. Ke and V. Ng, “Automated essay scoring: A survey of the state of the art.,” in

IJCAI, vol. 19, 2019, pp. 6300–6308.
[3] S. Mathias and P. Bhattacharyya, “Can neural networks automatically score essay

traits?” In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications, J. Burstein, E. Kochmar, C. Leacock, et al.,
Eds., Seattle, WA, USA → Online: Association for Computational Linguistics,
Jul. 2020, pp. 85–91. doi: 10.18653/v1/2020.bea-1.8. [Online]. Available:
https://aclanthology.org/2020.bea-1.8.

[4] M. Chen and X. Li, “Relevance-based automated essay scoring via hierarchical re-
current model,” in 2018 International Conference on Asian Language Processing
(IALP), IEEE, 2018, pp. 378–383.

[5] I. Persing and V. Ng, “Modeling prompt adherence in student essays,” in Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), K. Toutanova and H. Wu, Eds., Baltimore, Mary-
land: Association for Computational Linguistics, Jun. 2014, pp. 1534–1543. doi:
10.3115/v1/P14-1144. [Online]. Available: https://aclanthology.org/
P14-1144.

[6] S. Mathias and P. Bhattacharyya, “ASAP++: Enriching the ASAP automated es-
say grading dataset with essay attribute scores,” in Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018),
N. Calzolari, K. Choukri, C. Cieri, et al., Eds., Miyazaki, Japan: European Lan-
guage Resources Association (ELRA), May 2018. [Online]. Available: https:
//aclanthology.org/L18-1187.

[7] F. Dong, Y. Zhang, and J. Yang, “Attention-based recurrent convolutional neural
network for automatic essay scoring,” in Proceedings of the 21st Conference
on Computational Natural Language Learning (CoNLL 2017), R. Levy and L.
Specia, Eds., Vancouver, Canada: Association for Computational Linguistics,
Aug. 2017, pp. 153–162. doi: 10.18653/v1/K17-1017. [Online]. Available:
https://aclanthology.org/K17-1017.

[8] W. Song, Z. Song, L. Liu, and R. Fu, “Hierarchical multi-task learning for or-
ganization evaluation of argumentative student essays,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
C. Bessiere, Ed., Main track, International Joint Conferences on Artificial Intel-
ligence Organization, Jul. 2020, pp. 3875–3881. doi: 10.24963/ijcai.2020/
536. [Online]. Available: https://doi.org/10.24963/ijcai.2020/536.

[9] R. Yang, J. Cao, Z. Wen, Y. Wu, and X. He, “Enhancing automated essay scoring
performance via fine-tuning pre-trained language models with combination of
regression and ranking,” in Findings of the Association for Computational Lin-
guistics: EMNLP 2020, T. Cohn, Y. He, and Y. Liu, Eds., Online: Association
for Computational Linguistics, Nov. 2020, pp. 1560–1569. doi: 10.18653/v1/
2020.findings-emnlp.141. [Online]. Available: https://aclanthology.
org/2020.findings-emnlp.141.

36

https://doi.org/10.18653/v1/2020.bea-1.8
https://aclanthology.org/2020.bea-1.8
https://doi.org/10.3115/v1/P14-1144
https://aclanthology.org/P14-1144
https://aclanthology.org/P14-1144
https://aclanthology.org/L18-1187
https://aclanthology.org/L18-1187
https://doi.org/10.18653/v1/K17-1017
https://aclanthology.org/K17-1017
https://doi.org/10.24963/ijcai.2020/536
https://doi.org/10.24963/ijcai.2020/536
https://doi.org/10.24963/ijcai.2020/536
https://doi.org/10.18653/v1/2020.findings-emnlp.141
https://doi.org/10.18653/v1/2020.findings-emnlp.141
https://aclanthology.org/2020.findings-emnlp.141
https://aclanthology.org/2020.findings-emnlp.141


[10] R. Kumar, S. Mathias, S. Saha, and P. Bhattacharyya, “Many hands make light
work: Using essay traits to automatically score essays,” in Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, M. Carpuat, M.-C. de Marneffe,
and I. V. Meza Ruiz, Eds., Seattle, United States: Association for Computational
Linguistics, Jul. 2022, pp. 1485–1495. doi: 10.18653/v1/2022.naacl-
main.106. [Online]. Available: https://aclanthology.org/2022.naacl-
main.106.

[11] J. Xue, X. Tang, and L. Zheng, “A hierarchical bert-based transfer learning
approach for multi-dimensional essay scoring,” IEEE Access, vol. 9, pp. 125 403–
125 415, 2021. doi: 10.1109/ACCESS.2021.3110683.

[12] Z. Jiang, T. Gao, Y. Yin, et al., “Improving domain generalization for prompt-
aware essay scoring via disentangled representation learning,” in Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto,
Canada: Association for Computational Linguistics, Jul. 2023, pp. 12 456–12 470.
doi: 10.18653/v1/2023.acl-long.696. [Online]. Available: https://
aclanthology.org/2023.acl-long.696.

[13] C. Jin, B. He, K. Hui, and L. Sun, “TDNN: A two-stage deep neural network
for prompt-independent automated essay scoring,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), I. Gurevych and Y. Miyao, Eds., Melbourne, Australia: Association for
Computational Linguistics, Jul. 2018, pp. 1088–1097. doi: 10.18653/v1/P18-
1100. [Online]. Available: https://aclanthology.org/P18-1100.

[14] X. Li, M. Chen, and J.-Y. Nie, “Sednn: Shared and enhanced deep neural network
model for cross-prompt automated essay scoring,” Knowledge-Based Systems,
vol. 210, p. 106 491, 2020.

[15] Y. Cao, H. Jin, X. Wan, and Z. Yu, “Domain-adaptive neural automated essay
scoring,” in Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2020, pp. 1011–1020.

[16] R. Ridley, L. He, X.-y. Dai, S. Huang, and J. Chen, “Automated cross-prompt
scoring of essay traits,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, 2021, pp. 13 745–13 753.

[17] H. Do, Y. Kim, and G. G. Lee, “Prompt- and trait relation-aware cross-prompt
essay trait scoring,” in Findings of the Association for Computational Linguis-
tics: ACL 2023, A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto,
Canada: Association for Computational Linguistics, Jul. 2023, pp. 1538–1551.
doi: 10.18653/v1/2023.findings-acl.98. [Online]. Available: https:
//aclanthology.org/2023.findings-acl.98.

[18] Y. Chen and X. Li, “PMAES: Prompt-mapping contrastive learning for cross-
prompt automated essay scoring,” in Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), A.
Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 1489–1503. doi: 10.18653/v1/
2023.acl-long.83. [Online]. Available: https://aclanthology.org/
2023.acl-long.83.

37

https://doi.org/10.18653/v1/2022.naacl-main.106
https://doi.org/10.18653/v1/2022.naacl-main.106
https://aclanthology.org/2022.naacl-main.106
https://aclanthology.org/2022.naacl-main.106
https://doi.org/10.1109/ACCESS.2021.3110683
https://doi.org/10.18653/v1/2023.acl-long.696
https://aclanthology.org/2023.acl-long.696
https://aclanthology.org/2023.acl-long.696
https://doi.org/10.18653/v1/P18-1100
https://doi.org/10.18653/v1/P18-1100
https://aclanthology.org/P18-1100
https://doi.org/10.18653/v1/2023.findings-acl.98
https://aclanthology.org/2023.findings-acl.98
https://aclanthology.org/2023.findings-acl.98
https://doi.org/10.18653/v1/2023.acl-long.83
https://doi.org/10.18653/v1/2023.acl-long.83
https://aclanthology.org/2023.acl-long.83
https://aclanthology.org/2023.acl-long.83


[19] M. M. Gaheen, R. M. ElEraky, and A. A. Ewees, “Automated students arabic
essay scoring using trained neural network by e-jaya optimization to support
personalized system of instruction,” Education and Information Technologies,
vol. 26, pp. 1165–1181, 2021.

[20] M. M. Gaheen, R. M. ElEraky, and A. A. Ewees, “Optimized neural network-based
improved multiverse optimizer algorithm for automated arabic essay scoring,”
International Journal of Scientific & Technology Research, vol. 9, pp. 238–243,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
229038743.

[21] W. Alsanie, M. I. Alkanhal, M. Alhamadi, and A. O. Alqabbany, “Automatic scor-
ing of arabic essays over three linguistic levels,” Progress in Artificial Intelligence,
pp. 1–13, 2022.

[22] A. M. Azmi, M. F. Al-Jouie, and M. Hussain, “Aaee–automated evaluation of
students’ essays in arabic language,” Information Processing & Management,
vol. 56, no. 5, pp. 1736–1752, 2019.

[23] A. Alqahtani and A. Al-Saif, “Automated arabic essay evaluation,” in Proceedings
of the 17th International Conference on Natural Language Processing (ICON),
2020, pp. 181–190.

[24] R. A. Machhout and C. B. O. Zribi, “Enhanced bert approach to score arabic
essay’s relevance to the prompt,” Communications of the IBIMA, vol. 2024, 2024.
doi: 10.5171/2024.176992. [Online]. Available: https://doi.org/10.
5171/2024.176992.

[25] R. Cummins, H. Yannakoudakis, and T. Briscoe, “Unsupervised modeling of
topical relevance in l2 learner text,” in Proceedings of the 11th workshop on
innovative use of NLP for building educational applications, 2016, pp. 95–104.

[26] M. Rei and R. Cummins, “Sentence similarity measures for fine-grained estima-
tion of topical relevance in learner essays,” in Proceedings of the 11th Workshop
on Innovative Use of NLP for Building Educational Applications, J. Tetreault, J.
Burstein, C. Leacock, and H. Yannakoudakis, Eds., San Diego, CA: Association
for Computational Linguistics, Jun. 2016, pp. 283–288. doi: 10.18653/v1/W16-
0533. [Online]. Available: https://aclanthology.org/W16-0533.

[27] M. Cozma, A. Butnaru, and R. T. Ionescu, “Automated essay scoring with string
kernels and word embeddings,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), I. Gurevych
and Y. Miyao, Eds., Melbourne, Australia: Association for Computational Lin-
guistics, Jul. 2018, pp. 503–509. doi: 10.18653/v1/P18- 2080. [Online].
Available: https://aclanthology.org/P18-2080.

[28] H. Do, Y. Kim, and G. G. Lee, “Autoregressive score generation for multi-trait
essay scoring,” arXiv preprint arXiv:2403.08332, 2024.

[29] S. Li and V. Ng, “ICLE++: Modeling fine-grained traits for holistic essay scor-
ing,” in Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), K. Duh, H. Gomez, and S. Bethard, Eds., Mexico City,
Mexico: Association for Computational Linguistics, Jun. 2024, pp. 8465–8486.

38

https://api.semanticscholar.org/CorpusID:229038743
https://api.semanticscholar.org/CorpusID:229038743
https://doi.org/10.5171/2024.176992
https://doi.org/10.5171/2024.176992
https://doi.org/10.5171/2024.176992
https://doi.org/10.18653/v1/W16-0533
https://doi.org/10.18653/v1/W16-0533
https://aclanthology.org/W16-0533
https://doi.org/10.18653/v1/P18-2080
https://aclanthology.org/P18-2080


doi: 10.18653/v1/2024.naacl-long.468. [Online]. Available: https:
//aclanthology.org/2024.naacl-long.468.

[30] H. Do, S. Ryu, and G. G. Lee, “Autoregressive multi-trait essay scoring via
reinforcement learning with scoring-aware multiple rewards,” arXiv preprint
arXiv:2409.17472, 2024.

[31] R. Ridley, L. He, X. Dai, S. Huang, and J. Chen, “Prompt agnostic essay scorer: A
domain generalization approach to cross-prompt automated essay scoring,” arXiv
preprint arXiv:2008.01441, 2020.

[32] S. Li and V. Ng, “Conundrums in cross-prompt automated essay scoring: Making
sense of the state of the art,” in Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), L.-W.
Ku, A. Martins, and V. Srikumar, Eds., Bangkok, Thailand: Association for
Computational Linguistics, Aug. 2024, pp. 7661–7681. doi: 10.18653/v1/
2024.acl-long.414. [Online]. Available: https://aclanthology.org/
2024.acl-long.414.

[33] H. Do, T. Park, S. Ryu, and G. G. Lee, “Towards prompt generalization: Grammar-
aware cross-prompt automated essay scoring,” arXiv preprint arXiv:2502.08450,
2025.

[34] H. A. Abdeljaber, “Automatic arabic short answers scoring using longest common
subsequence and arabic wordnet,” IEEE Access, vol. 9, pp. 76 433–76 445, 2021.

[35] M. Alobed, A. M. Altrad, and Z. B. A. Bakar, “A comparative analysis of eu-
clidean, jaccard and cosine similarity measure and arabic wordnet for automated
arabic essay scoring,” in 2021 Fifth International Conference on Information
Retrieval and Knowledge Management (CAMP), IEEE, 2021, pp. 70–74.

[36] R. Ghazawi and E. Simpson, “Automated essay scoring in arabic: A dataset and
analysis of a bert-based system,” arXiv preprint arXiv:2407.11212, 2024.

[37] M. Alobed, A. M. Altrad, Z. B. A. Bakar, and N. Zamin, “Automated arabic
essay scoring based on hybrid stemming with wordnet,” Malaysian Journal of
Computer Science, pp. 55–67, 2021.

[38] O. Khattab and M. Zaharia, “Colbert: Efficient and effective passage search via
contextualized late interaction over bert,” in Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval,
2020, pp. 39–48.

[39] L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval without
relevance labels,” in Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), A. Rogers, J. Boyd-
Graber, and N. Okazaki, Eds., Toronto, Canada: Association for Computational
Linguistics, Jul. 2023, pp. 1762–1777. doi: 10.18653/v1/2023.acl-long.99.
[Online]. Available: https://aclanthology.org/2023.acl-long.99.

[40] K. Taghipour and H. T. Ng, “A neural approach to automated essay scoring,” in
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, J. Su, K. Duh, and X. Carreras, Eds., Austin, Texas: Association for
Computational Linguistics, Nov. 2016, pp. 1882–1891. doi: 10.18653/v1/D16-
1193. [Online]. Available: https://aclanthology.org/D16-1193.

39

https://doi.org/10.18653/v1/2024.naacl-long.468
https://aclanthology.org/2024.naacl-long.468
https://aclanthology.org/2024.naacl-long.468
https://doi.org/10.18653/v1/2024.acl-long.414
https://doi.org/10.18653/v1/2024.acl-long.414
https://aclanthology.org/2024.acl-long.414
https://aclanthology.org/2024.acl-long.414
https://doi.org/10.18653/v1/2023.acl-long.99
https://aclanthology.org/2023.acl-long.99
https://doi.org/10.18653/v1/D16-1193
https://doi.org/10.18653/v1/D16-1193
https://aclanthology.org/D16-1193


[41] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit.,” Psychological bulletin, vol. 70, no. 4, p. 213, 1968.

[42] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation
and projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[43] A. Doewes, N. Kurdhi, and A. Saxena, “Evaluating quadratic weighted kappa
as the standard performance metric for automated essay scoring,” in 16th In-
ternational Conference on Educational Data Mining, EDM 2023, International
Educational Data Mining Society (IEDMS), 2023, pp. 103–113.

[44] A. Esuli, S. Baccianella, and F. Sebastiani, “Evaluation measures for ordinal re-
gression,” in Intelligent Systems Design and Applications, International Confer-
ence on, Los Alamitos, CA, USA: IEEE Computer Society, Dec. 2009, pp. 283–
287. doi: 10.1109/ISDA.2009.230. [Online]. Available: https://doi.
ieeecomputersociety.org/10.1109/ISDA.2009.230.

[45] S. Albatarni, S. Eltanbouly, and T. Elsayed, “Graded relevance scoring of writ-
ten essays with dense retrieval,” in Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2024,
pp. 1329–1338.

40

https://doi.org/10.1109/ISDA.2009.230
https://doi.ieeecomputersociety.org/10.1109/ISDA.2009.230
https://doi.ieeecomputersociety.org/10.1109/ISDA.2009.230


APPENDIX A: ARABIC BASELINES IMPLEMENTATION DETAILS
A.1. Feature-based

Feature-based models are implemented using Scikit-learn1. Table A.1 outlines
the hyper-parameters we tune and their respective values. The best hyper-parameters are
selected based on the highest QWK score on the development set. We extract features
across four categories: surface features, syntactic features, lexical features, and N-gram
features. Tables A.2 and A.3 provide a detailed breakdown of each feature along with
its description.

Table A.1. Hyper-parameters for feature-based baselines.

Model Hyper-parameter Values

Random Forest
Max depth [3, 4, 5, 6, 7, 8, 9, 10]
Max features [0.25, 0.5, 0.75, 1.0]

SVM
C [0.1, 1, 10]
Max iterations [500, 1000, 1500, -1]

A.2. Regression Fine-tuning

We use the Hugging Face Transformers training pipeline to fine-tune the en-
coders, specifically, we use AutoModelForSequenceClassification. Where a regression
head is appended to each model, and with a single output (i.e., num labels=1), the
training automatically employs Mean Squared Error loss.

For task-specific scoring, we performed a grid search over fine-tuning configura-
tions, experimenting with freezing all layers, the last 3, or the last 6 layers, and learning
rates of 2e-5, 3e-5, and 5e-5. The model was trained for 100 epochs, and the best
checkpoint was selected based on the QWK metric. For cross-task scoring, we used the
optimal parameters identified in task-specific scoring and trained the model for a fixed
100 epochs. The batch size was set to 16 across all experiments.

1https://scikit-learn.org/
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Table A.2. List of all Extracted Features.

Feature Category Feature Name Description

Surface Features Words count Total number of words in the text.
Log words count Logarithm of the total number of words.

Unique words count Number of distinct words in the text.

Log unique words count Logarithm of the number of unique words.

Average word length Mean length of words in the text.

Max length word Length of the longest word.

Min length word Length of the shortest word.

sd words Standard deviation of word lengths.

Chars conut Total number of characters in the text.

Hmpz count Total number of �
è 	QÒë in the text

Paragraphs count Total number of paragraphs.

Is first paragraph = 10 Whether the first paragraph has 10 or fewer words.

Average length paragraphMean length of paragraphs.

Max length paragraph Length of the longest paragraph.

Min length paragraph Length of the shortest paragraph.

Has parentheses Indicates whether the text contains parentheses.

Has colon Indicates whether the text contains a colon.
Has question mark Indicates whether the text contains a question mark.

Sentences count Total number of sentences.
Average length sentence Mean length of sentences.

Max length sentence Length of the longest sentence.

Min length sentence Length of the shortest sentence.

sd sentence Standard deviation of sentence lengths.

Syntactic Features noun count Total number of nouns in the text.

verb count Total number of verbs in the text.
adj count Total number of adjectives in the text.

punc count Total number of punctuation marks in the text.

pron count Total number of pronouns in the text.

pre count Total number of prepositions in the text.

adv count Total number of adverbs in the text.
conj count Total number of conjunctions in the text.

num count Total number of numerical values in the text.
misspelled count Total number of misspelled words in the text.

inna count Total number of Aî�E@ñ 	
k


@ð

	
à@


in the text

kana count Total number of Aî�E@ñ 	
k


@ð

	
àA¿ in the text
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Table A.3. List of all Extracted Features.

Feature Category Feature Name Description

Lexical Features stop words count Total number of stop words in the text.

words without stopwords Total number of words excluding stop words.

first paragraph intro words Whether first paragraph contains introductory words.

last paragraph conc words Whether last paragraph contains concluding words.

lexical density Ratio of content words (N, V, ADJ, ADV)
to total words number.

N-gram Features unigram and bigram Single words frequency (unigrams) and
2 consecutive words (bigrams).
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