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ABSTRACT

GAD, RADWA, E., Masters : June : 2025, Masters of Science in Computing

Title: Automating Information Extraction from Perovskite Solar Cells Literature Using
Large Language Models

Supervisor of Thesis: Dr. Tamer Elsayed.

With the rapid advancement of perovskite solar cells (PSCs) research, efficiently ex-
tracting structured data from scientific literature has become essential for accelerating
materials discovery and development. PSCs studies often report multiple device config-
urations within a single paper, making traditional single-device extraction approaches
insufficient. In this thesis, we are the first to propose an automated information extraction
pipeline that leverages Large Language models (LLMs) to extract structured attributes
for all reported devices in PSCs research papers. Our experiments utilize open-source
and closed-source LLMs, including GPT-40-mini, LLaMA 3.1 70B, and Qwen 2.5 72B,
ensuring a comprehensive evaluation across various model architectures. Additionally,
we introduce the first multi-device evaluation framework using an optimization-based
matching algorithm. We also define a wide range of PSC-specific attributes, care-
fully selected to enhance the practical utility of the extracted dataset for researchers.
Our experimental results demonstrate that the proposed pipeline outperforms existing
approaches, achieving a champion-device extraction F score of 90.06%, F; score of
78.70% for multi-device extraction, and the best £ score of 90.98% for the best device
in multi-device extraction. These findings highlight the effectiveness of our approach
in delivering a scalable, reproducible, and efficient solution for automating structured
information extraction from PSCs literature.
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CHAPTER 1: INTRODUCTION

The development of science since the 17th century has relied on the traditional
empirical method. As a result, much of the discovery and synthesis of advanced
functional materials has been driven by slow, expensive, and often tedious Edisonian
trial and error [1], [2]. From the research and development stage to prototyping in
laboratories through commercialization, materials processing and characterization can
take decades, requiring hazardous chemicals and incurring high costs [2]. The prolonged
timeline of conventional material discovery is incompatible with the urgent global
push for renewable energy solutions as governments seek accelerated technological
advancements to meet climate targets and decarbonization goals. This challenge is
particularly evident in the field of solar cells. Since the discovery of the first photovoltaic
cell at Bell Laboratories in 1954, despite substantial efforts by the scientific community,
solar cells have yet to fully replace non-renewable energy sources, such as petroleum or
natural gas.

To bridge this gap, the search for next-generation photovoltaic materials has
led to the emergence of Perovskite Solar Cells (PSCs), which have demonstrated un-
precedented efficiency gains and potential for low-cost fabrication. Their rapid progress
within just over a decade highlights their disruptive potential in the renewable energy
landscape. However, a paradigm shift in material discovery and data management is es-
sential to accelerate their path from laboratory breakthroughs to commercial deployment
[3], [4]. Leveraging automation, machine learning, and large-scale data integration can
significantly enhance our ability to identify stable, high-performance perovskite com-
positions, ensuring that PSCs make a meaningful contribution to the global energy
transition.

Given the remarkable semiconductor properties of metal halide perovskites, the
research community has extensively explored their potential for solar cells and other
optoelectronic applications, overcoming their instability challenges. However, the rapid
pace of discovery—driven by thousands of publications each year—poses a significant
challenge for researchers attempting to track and interpret critical advancements. The
sheer volume of data makes it nearly impossible for experts to extract meaningful insights
or recognize overarching trends without systematic organization. To fully harness the
potential of perovskites and accelerate progress in the field, there is an urgent need
for comprehensive, structured databases that consolidate and standardize experimental
findings, enabling efficient data-driven research.

In 2022, Jacobsson et al. compiled The Perovskite Database, an open-access
repository aggregating over 42,000 device performance data points from 15,000 articles
published before February 2020 [5]. They constructed their data based on the FAIR
data principles, ensuring that the information is Findable, Accessible, Interoperable, and
Reusable (FAIR). This approach aims to enhance data transparency, facilitate large-scale
analysis, and promote knowledge sharing within the research community. Their work
demonstrated how such a database could help filter and visualize device performance
trends, as well as conduct large-scale statistical analyses. However, their data extraction
method relied entirely on manual efforts, requiring researchers to scan journal articles,
extract relevant attributes, and format them according to a predefined schema before
database entry. This approach required an estimated 5,000 to 10,000 hours of human
labor to process data from 7,400 publications. Additionally, the database expansion
relied on voluntary contributions from the research community, resulting in slow updates
to the database. For example, between March 2023 and May 2024, the total number
of records increased marginally from 43,231 to 43,252, highlighting a lack of sustained
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input [6]. Furthermore, reliance on human entry introduces formatting inconsistencies
and transcription errors, resulting in numerous missing values that complicate data
consolidation and limit the database’s direct usability. These challenges underscore the
need for standardized protocols, unified reporting methods, and automated Al-driven
solutions for scientific data extraction [6]—[8].

Given the challenges posed by manual scientific discovery, automation and high-
throughput approaches have gained significant traction across multiple domains, includ-
ing drug discovery, catalysis, Li-ion batteries, and organic solar cells, facilitating intelli-
gent material exploration and enabling a faster transition from fundamental research to
commercial applications [3], [4]. In 2013, the Materials Genome Initiative introduced
the Materials Project[9], along with other large-scale databases [10]-[15], integrating
computational materials datasets with information technology to accelerate discovery.
However, these repositories primarily rely on theoretical calculations, while experimen-
tally derived materials data remain scattered across the scientific literature, limiting their
applicability. The only large-scale experimental databases currently available mainly fo-
cus on inorganic crystal structures rather than comprehensive optoelectronic properties
or device performance data [16], [17].

The rapid advancements in Natural Language Processing (NLP) and LLMs have
significantly transformed how scientific knowledge is processed and utilized across
various disciplines, including materials science [18]. Traditionally, extracting criti-
cal information from research papers, patents, and experimental reports has been a
manual, time-consuming, and error-prone process, requiring domain experts to care-
fully sift through vast amounts of unstructured text. NLP techniques, ranging from
rule-based methods to deep learning-based language models, have provided automa-
tion and efficiency in text mining, classification, and information extraction [19], [20].
More recently, LLMs such as GPT [21] and BERT [22] have demonstrated remarkable
capabilities in understanding and generating human-like text, allowing researchers to
leverage these models for automated scientific knowledge extraction, summarization,
and analysis. These advancements enable the development of large-scale structured
databases by extracting key material properties, synthesis conditions, and performance
metrics from unstructured literature, facilitating faster discovery and innovation [23].

LLMs are crucial in accelerating data-driven research in materials science by
transforming scattered textual data into organized, machine-readable formats. Unlike
traditional database curation methods, which often rely on manual annotations or rule-
based algorithms, LLMs can interpret complex scientific narratives, extract hidden
patterns, and generalize across multiple material science domains with minimal human
intervention [24]. This capability is particularly beneficial in PSCs, battery materials,
catalysts, and quantum materials, where experimental data is frequently reported in
varied and non-standardized formats [25].

Notably, in the field of PSCs, the potential of LLMs to transform traditional
research methodologies is immense. Unlike structured databases, scientific papers of-
ten detail material properties and experimental results in varied and complex formats,
including narrative texts, tables, and figures. LLMs are adept at navigating this di-
versity, extracting critical data points such as bandgap values, stability conditions, and
efficiency metrics from unstructured formats, which are often missed by conventional
data extraction tools [26]—[28].



1.1. Problem Statement

Despite their potential, LLMs face several challenges when applied to the ex-
traction of materials science information. Scientific knowledge in PSCs is primarily
documented in unstructured research papers, making it difficult to systematically ex-
tract, analyze, and utilize critical device information. Structured databases are crucial
for facilitating large-scale, data-driven research.

To our knowledge, the FAIR database is the only structured database compiled
from PSCs’ research articles. However, its construction relied entirely on manual
data extraction, requiring an estimated 5,000 to 10,000 hours of expert effort to process
information from just 8,200 papers. This manual approach poses several challenges. The
time-intensive nature of manual data extraction prevents rapid expansion and updates,
limiting the database’s long-term utility. Manual curation introduces inconsistencies,
missing values, and formatting errors, making it challenging to ensure high-quality,
standardized data. Expanding the FAIR database or generating similar datasets for
different material science subfields remains daunting due to the reliance on human
effort. Given these challenges, an automated method for extracting structured data from
PSCs literature with minimal human intervention is critical.

LLMs provide a promising avenue for automated information extraction, but
several domain-specific challenges remain. Those challenges can be summarized as
follows:

* Attribute Selection: Defining an optimal set of attributes most relevant for PSCs,
ensuring that extracted data is valuable and actionable for researchers.

e Multi-Device Extraction: Unlike other material science fields, each research
paper on PSCs often describes multiple devices or several device configurations.
This introduces extraction and evaluation complexity, as papers report devices
with distinct parameters, such as material compositions, deposition methods,
and performance metrics. Direct one-to-one comparisons between extracted and
ground truth devices become ineffective, requiring an advanced matching strategy
to ensure a more reliable evaluation.

* Extraction Strategies: While fine-tuning LLMs can improve extraction accuracy,
it is computationally expensive and resource-intensive. Alternatively, prompt
engineering presents a lower-cost solution, but its effectiveness in structured PSCs
information extraction needs further investigation.

* Evaluation Complexity: Due to the high variability in scientific writing formats,
numerical data representations, and implicit reporting styles, evaluating extracted
information is non-trivial. In particular, traditional evaluation methods are not
well-suited for assessing multi-device extractions, as they struggle to account for
the complexity and variability inherent in publications that report multiple device
configurations.

To that end, this thesis addresses the problem of automated information extraction
and evaluation from PSCs literature, defined as follows: Given a full-text PSCs paper
reporting one or more devices, our goal is to extract structured device attributes for all
reported devices and evaluate the correctness of the extracted data. Figure 1.1 illustrates
an example text paper and the corresponding extracted data.
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cell displayed low performance due to the poor coverage. The
humidity-exposed films had much better power conversion effi
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"Ref_DOI_number": "10.1038/ncomms13503",
"Perovskite_composition_long_form": “CH3NH3PbI3",

Figure 1.1. Example for the input and output of our approach. The left side shows an
excerpt from a PSCs article, where key device attributes such as Voc, Jsc, FF, and PCE
are highlighted and to be extracted. The right side presents the structured JSON output
generated by our approach, capturing the extracted attributes.

To address the problem, we propose an LLM-based pipeline for automated infor-
mation extraction from the PSCs literature. Our approach has three main components.

The first key component of our approach is dataset collection and attribute
selection, where we construct a well-defined attribute schema based on expert-driven
selection. This ensures that only relevant and high-impact attributes are extracted,
making the generated database actionable and meaningful for researchers.

The second component is the information extraction, which encompasses both
single and multi-device extraction, enabling the identification and extraction of mul-
tiple device configurations per research paper. This feature addresses a significant
limitation in prior work, where most extraction efforts focused only on single-device
data extraction. Since PSCs studies frequently report multiple devices per publication,
our framework is designed to capture this complexity, ensuring a more complete and
accurate representation of the dataset.

Finally, to ensure the reliability of the extracted data, we developed a robust
evaluation framework that accounts for single- and multi-device extraction evaluations.

1.2. Objectives

This work aims to:

¢ Automate the extraction of structured PSC information from full-text research
papers using LLMs.

* Develop a scalable and reproducible dual extraction framework that supports
processing single and multiple devices per publication.

* Develop an advanced evaluation methodology that evaluates the effectiveness of
extracting single and multiple devices.



* Construct a high-quality, standardized dataset of extracted PSC attributes from

full research papers, improving accessibility and usability for researchers.

1.3. Contributions

Our work presents several contributions:

Our proposed approach outperforms the state-of-the-art rule-based and LLM-
based approaches.

We are the first to introduce a structured approach to extract multiple PSCs
devices per publication, making it possible to automate a database construction in
a scalable and reproducible manner.

We are the first to propose an evaluation framework that can evaluate both single
and multiple devices.

We selected a comprehensive set of attributes, focusing on key performance
metrics (e.g., Current Voltage (JV) parameters, Power Conversion Efficiency),
ensuring high relevance for PSCs researchers.

We systematically evaluate zero-shot, few-shot, and CoT prompting, demonstrat-
ing that prompting techniques can achieve competitive performance relative to
fine-tuning.

While focused on PSCs, our modular extraction framework is highly adaptable. It
can be applied to various subfields in materials science, enabling the automated
extraction of knowledge across diverse materials science domains.

1.4. Research Questions

To systematically explore the effectiveness of LLMs in PSCs extraction and evaluation,
this study aims to answer the following research questions:

RQ1:

RQ2:

RQ3:

RQ4:

How do different prompt engineering techniques (few-shot, zero-shot, CoTl’) impact
extraction performance?

How does extracting all devices affect overall extraction performance compared
to focusing on the champion device only (the device with the highest Power
Conversion Efficiency (PCE) of their JV reverse scan)?

Is fine-tuning more effective than extensive prompt engineering for material sci-
ence information extraction?

How does our approach compare to state-of-the-art (SOTA) methods?

The remainder of this thesis is structured as follows. Chapter 2 discusses related work.
Chapter 3 describes our proposed methodology. Chapter 4 illustrates the experimental
evaluation and discusses the results. Chapter 5 provides concluding remarks and presents
potential future directions for this work.



CHAPTER 2: RELATED WORK
2.1. State-of-the-art Material for Solar Cells

Since the advent of silicon (Si) solar cells in the 1950s, photovoltaics have under-
gone significant evolution through multiple generations of materials and technologies.
First-generation solar cells, dominated by crystalline silicon, laid the foundation for
commercial photovoltaics but faced limitations in terms of cost and efficiency. Second-
generation thin-film technologies, including cadmium telluride (CdTe) and copper in-
dium gallium selenide (CIGS), sought to reduce material usage and manufacturing
costs while maintaining competitive performance. However, the emergence of third-
generation photovoltaics—particularly PSCs revolutionized the field by achieving rapid
efficiency gains, low-cost fabrication, and tunable optoelectronic properties. Unlike tra-
ditional semiconductor materials, perovskites possess defect-tolerant electronic struc-
tures and high absorption coeflicients, enabling efficiencies exceeding 26% in just over
a decade of research. Moreover, their potential to surpass the Shockley-Queisser limit
through tandem integration with silicon or all-perovskite architectures makes them a
state-of-the-art material poised to redefine the future of solar energy.

A state-of-the-art material:  Perovskites, an emerging class of organic-
inorganic hybrid semiconductors made from metal halides, are outstanding candidates
to revolutionize both power consumption and production [29], [30].

Halide perovskites has the general formula A B X3, feature a cubic structure where
A is a larger monovalent cation (e.g., cesium ion (C's™, methylammonium (C' Hz N H. 3+ )
ion), formamidinium ion (C'H (N Hg);), or a mixture of these), B is a smaller metal
cation (e.g., Pb** or Sn*"). X is a halide anion (CI~, Br~, or 7). Their unique
crystal structure, consisting of corner-sharing B X octahedra with A-site cations filling
the interstitial spaces, yields exceptional optoelectronic properties.

A B

@ o o

The A-site cation can be Cesium ion, methylammonium (CH;NH;*)
ion), formamidinium ion (CH(NH,),*), or a mixture of these.

The B-site cation can be a Lead ion (Pb2*), a Tin ion (Sn2*),
or a mixture of both.

Perovskite crystal structure ) i o )
The X-site can be occupied by halide ions such as chloride

(CI7), bromide (Br~), iodide (I7), or their mixture."

Figure 2.1. Perovskite lattice (one unit cell structure): the solid red line denotes the
cubic structure.

The energy efficiency [29] of this class of semiconductors is due to their extraor-
dinary properties such as having a panchromatic absorption profile, exhibiting intense
and narrow-band luminescence (strong absorption coefficient of ~ 105 cm 1), and pos-
sessing excellent ambipolar charge carrier mobilities as well as relatively long carrier
diffusion length (> 1 pm), bringing them to the forefront of emerging optoelectronic
materials (e.g. PVs [30]-[35], LEDs [36]-[40] and electroluminescent devices [41]).
Despite these promising features, the commercialization of metal halide perovskites
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faces significant challenges that affect their performance metrics and eventually lead to
degradation trails, putting the device’s long-term stability at risk [42], [43].

2.2. NLP for Material Science

NLP has played an increasingly significant role in materials science and ma-
terials discovery by enabling the automated extraction of information, text mining,
classification, and analysis of scientific literature [18]. Early NLP applications in ma-
terials science primarily relied on rule-based approaches and supervised learning mod-
els [44]-[46]. However, the advent of transformer-based architectures such as BERT
(Bidirectional Encoder Representations from Transformers) [22] and GPT (Generative
Pretrained Transformer) [21] has significantly enhanced the ability of models to under-
stand domain-specific terminology, extract relationships between material properties,
and generate meaningful predictions. This section reviews key advancements in NLP
for materials science, focusing on BERT-based models and LLMs such as GPT, as well
as domain-adapted models.

2.2.1. BERT-Based Models for Materials Science

BERT and its domain-specific variants have been widely adopted in materials
science applications due to their robust contextual understanding and adaptability for text
mining. In materials science literature, several studies have pre-trained and fine-tuned
BERT-based models to improve named entity recognition and information extraction
tasks.

One notable adaptation is MatBERT, which was trained on materials science
corpora. [47] demonstrated that MatBERT outperforms general-purpose BERT and
even SciBERT [48], highlighting the importance of domain-specific pre-training for
improving named entity recognition (NER) tasks in materials science literature. Their
study also found that even a simpler BiILSTM model, trained with materials science
embeddings, outperformed general-purpose BERT models, emphasizing the necessity
of fine-tuned pre-training.

Another specialized model, MatSciBERT, was developed as a domain-specific
model for material science to further refine entity recognition and relation extraction
[49].

Furthermore, BatteryBERT was introduced as a domain-specific NLP model
tailored for research on battery materials [50]. The study demonstrated that models
like BatteryBERT significantly outperform general BERT models in extracting relevant
material properties, synthesis methods, and applications from research papers.

In addition, Optical BERT was designed for text and table-based language mod-
eling within the optical materials domain [51]. This work highlights how BERT-based
models can be tailored to support specific material science subfields, thereby enhancing
structured information extraction.

MatSciNLP was developed as a benchmark to evaluate NLP models on various
materials science tasks, such as named entity recognition, relation classification, and
synthesis action retrieval [52]. This benchmark highlighted the benefits of using pre-
trained domain-specific models, particularly MatBERT, which outperformed general-
purpose models in materials science text-processing tasks.



A crucial finding across these models is that fine-tuning on domain-specific cor-
pora significantly improves performance in materials science tasks. However, despite
these advancements, BERT-based models still face challenges in handling long-form
scientific documents, complex multi-device descriptions, and extracting implicit knowl-
edge.

2.2.2. Large Language Models for Materials Science

The advent of large generative models, such as GPT-based models, LLaMA, and
domain-specific LLMs, has provided new opportunities for materials science, surpass-
ing traditional BERT-based approaches in handling complex language structures and
reasoning-based tasks.

Choi et al. [53] proposed a GPT-enabled materials language processing (MLP)
pipeline for chemistry and materials science applications, demonstrating that prompt-
based approaches can achieve comparable accuracy to fine-tuned BERT models in
document classification, named entity recognition, and extractive question answering.
Their work highlights the efficiency of strategic prompt engineering in replacing complex
architectures traditionally required for materials information extraction.

Recent studies have evaluated GPT-4’s capabilities in chemical and materials
science research, revealing its potential for foundational chemistry knowledge, chemin-
formatics, data analysis, and hypothesis generation [54].

ChemLLM [55], a chemical large language model, demonstrated strong perfor-
mance in chemical property prediction and material synthesis reasoning. Similarly,
Choi et al. [53] proposed a GPT-enabled MLP pipeline for chemistry and materials
science applications, demonstrating that prompt-based approaches can achieve compa-
rable accuracy to fine-tuned BERT models in document classification, named entity
recognition, and extractive question answering. Their work highlights the efficiency of
strategic prompt engineering in replacing complex architectures traditionally required
for materials information extraction. The work found that while these models excel
at general scientific understanding, they often struggle with the specificity required for
materials science tasks, such as parsing precise compositions and extracting synthesis
procedures.

The DARWIN SERIES introduced domain-specific LLMs for natural science,
incorporating progressive instruction fine-tuning to improve model adaptation to com-
plex material descriptions [56]. Similarly, MatChat [57], a large language model and
service platform for materials science, was designed to provide real-time assistance for
materials research queries, showcasing how conversational Al can enhance information
retrieval in scientific literature.

Beyond retrieval and extraction tasks, LLMs have also been explored for gener-
ating scientific hypotheses in materials science. Studies have assessed whether models
like ChatGPT can generate novel hypotheses by reasoning through existing literature
[58], [59]. For instance, [58] demonstrated that ChatGPT could assist in hypothesis
generation for improving perovskite solar cells. Their study used ChatGPT to identify
polyallylamine (PAA) as a potential surface modifier, a molecule that was subsequently
experimentally validated to enhance device efficiency.

Despite their advantages, LLMs introduce challenges related to hallucination,
domain adaptation, and evaluation, requiring rigorous validation methods to ensure
reliability. The following sections explore how these models are applied to information



extraction and evaluation within materials science.

2.3. Information Extraction in Material Science

Information extraction in materials science is crucial for building structured
databases from unstructured text, enabling efficient access to scientific knowledge.
Traditionally, IE has relied on rule-based NLP techniques, named entity recognition
(NER), and algorithmic approaches to extract relevant information. However, these
methods often require extensive domain expertise, manual rule-setting, and predefined
heuristics, limiting their scalability and adaptability to new research.

2.3.1. Information Extraction in PSCs

A rule-based NLP approach was employed by Valencia et al. [6], who developed
an NLP-driven system for extracting the fabrication details of PSCs from journal articles.
Their method utilized NLP tools, such as ChemDataExtractor, alongside algorithmic
techniques to systematically extract device data, extrinsic cell definitions, and fabrication
procedures. By processing 3,164 journal articles, their system achieved an average
extraction accuracy of 89.9%, demonstrating the effectiveness of structured algorithmic
methods in automating database generation. However, while this approach proved
reliable, it still required carefully designed extraction rules and was limited in its ability
to generalize across different material domains.

Similarly, Zhang et al. [60] developed an NLP-driven framework for exploring
literature and discovering PSC materials. Their model utilized the word2vec technique to
analyze 29,060 scientific publications, successfully learning key concepts such as light-
absorbing, electron-transporting, and hole-transporting materials in PSCs. The NLP
model identified a novel hole-transporting material (F'e30,), which was subsequently
validated through density functional theory (DFT) calculations and device experiments.

With recent advances in LLMs, IE has transformed, reducing its dependency
on manual rule-setting and enabling more flexible data extraction with minimal human
intervention. Xieetal. [7]introduced a structured information inference (SII) framework
that leveraged fine-tuned LLaM A models to convert unstructured data on Perovskite solar
cells materials into structured formats. Their approach employed a pipeline to extract
and standardize key material attributes directly from research papers, achieving an F}
score of 87.14%. Unlike rule-based NLP methods, the model demonstrated the ability to
generalize across diverse material descriptions and could further support the predictive
modeling of material properties.

2.3.2. Information Extraction Across Material Science Domains

Beyond perovskite solar cells, efforts have been made to extract data from a
broader range of material science subfields.

Dagdelen et al. [23] presented an approach that fine-tunes pre-trained large
language models (such as GPT-3 and LLLaMA-2) to perform NER and relation extraction
jointly. Their method extracts structured knowledge from scientific literature, generating
output in plain text or structured formats, such as JSON. This approach was tested on
materials chemistry-related tasks, demonstrating significant improvements in accuracy
and usability compared to traditional IE methods. The study highlights the potential of
LLMs to create large, structured scientific knowledge bases from unstructured research
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papers, which is directly relevant to our work on extracting structured information from
the perovskite field.

Another study by Gupta et al. [61] investigated the capacity of GPT-based
models to extract reaction conditions from polymer literature, demonstrating that fine-
tuned LLMs significantly outperform general-purpose models. Their approach achieved
a 78.6% accuracy in extracting polymer reaction data, highlighting the benefits of
domain-specific fine-tuning.

Polak Morgan (2024) [62] introduced ChatExtract, a method that leverages
conversational LLMs to extract material data with high precision, achieving 90.8%
precision and 87.7% recall for bulk modulus extraction and critical cooling rates of
metallic glasses.

Similarly, Leong et al. [63] proposed a multimodal LLM-based reaction mining
pipeline (MERMES) to extract chemical reaction data from text, figures, and tables,
demonstrating 96% accuracy in reaction parsing.

In computational material science, MatScIE [64] was developed as an automated
tool for generating structured databases from computational materials literature. The
system extracted methods, parameters, and results from papers, streamlining the knowl-
edge extraction process for computational materials studies. Their approach demon-
strated that automated NLP pipelines could facilitate large-scale data aggregation and
reduce the reliance on manual curation.

A comprehensive study by Wang et al. [26] examined the performance of
generative LLLMs on domain-specific information extraction, specifically in extracting
bandgap data from materials science literature. The study compared GPT-4 against a
rule-based extraction method (ChemDataExtractor [19]) and found that GPT-4 signif-
icantly outperformed the rule-based approach, achieving an 87.95% correctness rate.
In contrast, the rule-based method reached only 51.08% correctness. Notably, their
evaluation was conducted manually by human experts, who assessed the correctness of
each extracted bandgap value. This further motivated the development of robust and
advanced evaluation strategies that can provide consistent and scalable assessments for
similar tasks.

2.4. Prompt Engineering in Material Science

Prompt engineering has emerged as a crucial technique for optimizing LLM
performance in scientific data extraction. Instead of retraining or fine-tuning models,
researchers can craft structured prompts to guide LLMs toward more accurate and
context-aware outputs.

Chen et al. [65] examined zero-shot and few-shot prompting techniques for
extracting chemical-disease relations. Their work found that few-shot prompting out-
performed rule-based methods by 16.7% in F} scores, demonstrating the effectiveness
of example-based prompting strategies. Xia et al. [66] refined prompt engineering for
systematic literature reviews, showing that LLM-generated screening results reduced
human workload by over 80%.

Similarly, Polak and Morgan [62] developed ChatExtract, a prompt-based work-
flow for extracting materials data. Their study showed that by applying carefully en-
gineered follow-up prompts, ChatExtract achieved 90.8% precision and 87.7% recall
in extracting bulk modulus data while also maintaining high accuracy (91.6% preci-
sion, 83.6% recall) in extracting critical cooling rates for metallic glasses. The authors
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demonstrated that introducing uncertainty-inducing redundant questioning in prompts
significantly reduced errors and hallucinations in extracted data.

LLMs have also been employed to classify materials through prompt engineer-
ing. Liu et al. [67] developed a deep learning workflow that combines LLM-generated
textual features with a BERT-based classifier to improve classification accuracy. Their
approach was tested on metallic glass classification, achieving up to a 463% increase in
classification accuracy compared to traditional machine learning methods. The work-
flow demonstrated the potential of prompt engineering to distill scientific knowledge
from LLMs and transform it into structured labels for material databases.

A key challenge in leveraging LLLMs for materials science lies in integrating
domain-specific knowledge into their reasoning processes. Liu et al. [68] introduced a
domain-knowledge-embedded prompt engineering framework to enhance LLM perfor-
mance in chemistry and materials science. Their study demonstrated that incorporating
structured domain knowledge into prompts significantly improved capability, accuracy,
and Fi scores across multiple tasks, including materials classification and chemical
property prediction. The approach also led to a notable reduction in hallucinations,
ensuring more reliable outputs.

Another challenge in materials science is the interpretation of phase diagrams,
which are critical for understanding material stability and processing conditions. A
recent study explored prompt tuning strategies for LLMs to improve their ability to
comprehend and analyze phase diagrams [69]. The study found that carefully designed
few-shot prompting strategies significantly improved the precision of phase classification
tasks.
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CHAPTER 3: METHODOLOGY
This chapter presents the approach followed in our work, detailing the methods
used for extracting materials science information. It describes the dataset, the prompt
engineering techniques, the fine-tuning process, and the strategies employed to evaluate
the performance of the extraction.

3.1. Problem Definition

This thesis tackles the challenge of automating information extraction and eval-
uation from PSC literature. Specifically, given a full-text PSCs research paper that
describes one or more devices, our objective is to extract a well-defined set of structured
device attributes (e.g., JV reverse scan PCE and Bandgap) for each device reported in
the paper and assess the efficiency of the extracted data.

3.2. Approach Overview

To address the problem, we propose an approach that systematically extracts
structured data from PSCs literature. Our methodology consists of three main phases,
as illustrated in Figure 3.1.

1.Dataset Collection 2. Information Extraction 3. Evaluation
ZERO SHOT FEW SHOT / Single-device )
CHAIN OF THOUGHT P — G
Collecting PSCs literature Precision Recall F1
Prompting Engineerin,
Qﬁf | pting =ng s Exact & Partial Match
g = FAIR PSCs DB VS..
— . . — Multi-devices
Fine-tuning
Attributes Selection o1 a1
HTL LLM —> |7 || b2 o
— DB G3
~ell | [ETL||Substrate|| JV Ps 3
Fine-tuned o
\ / LLM \ Prediction Ground Truth/

Figure 3.1. Illustration of the proposed methodology

The first phase is dataset collection and input processing, where full research
papers related to perovskite solar cells are collected from multiple publication venues.
These collected documents are preprocessed and converted to plain text to ensure they
are suitable for further processing.

The second phase focuses on information extraction using LLMs. We explore
two distinct strategies for extracting scientific information. The first strategy is prompt
engineering-based extraction, which does not require prior structured or annotated data.
Instead, it relies on various prompt engineering techniques to guide the LLMs in ex-
tracting relevant information. The second strategy is fine-tuning-based extraction, where
LLMs are fine-tuned on domain-specific, annotated data. This method enables models
to learn domain-specific knowledge and enhance extraction performance. The extracted
information is then stored in a structured JSON format, following a predefined schema.
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The final phase involves our proposed evaluation methodology. Our evaluation
methodology assesses the performance of various extraction approaches, encompassing
both single-device and multi-device scenarios.

3.3. Dataset Construction

Instead of using summaries or abstracts, our approach processes entire research
papers as input to assess the capability of LLMs in extracting structured data from
long-form scientific content. With advancements in LLM architectures, many models
now support extended contexts of over 128K tokens (e.g. Llama-3.1' and GPT-40-
mini?), making them well-suited for handling extensive scientific documents. This
ability is particularly beneficial for our problem and similar challenges, where extracting
structured data from lengthy research papers is essential. This enables us to assess how
effectively LLMs can handle complete scientific documents without prior segmentation
or summarization.

The construction of the dataset for this work involves two primary steps: collect-
ing related research papers and selecting device-specific attributes.

3.3.1. Data Collection

To build a comprehensive dataset for information extraction in PSCs, we collected
research papers from multiple sources with API access: Elsevier®, Springer*, CORE?,
and arXiv®. Furthermore, we used SciCrawler [56], a web scraping tool, to collect data
from other journals, including the Royal Society of Chemistry (RSC)”.

We utilized domain-specific search terms selected carefully by a materials science
expert to ensure comprehensive coverage of relevant papers. The search terms included
are as follows:

“Lead halide PSCs,” ”Lead halide optoelectronics,” "halide segregation,”
”Perovskite Solar Cells Power Conversion Efficiencies,” "Perovskite Thin
Films,” ”perovskite solar cells and Electron Transport Layer”, “perovskite
solar cells and hole Transport Layer,” “Tandem Solar Cells”, ”Organic-
inorganic perovskites,” ”lead-free perovskites,” perovskite photovoltaics,”
“Double Perovskites,” “Hysteresis,” “Halide Segregation in Mixed-Halide

Perovskites,” ”’perovskite solar cells stability.”

2% 9

Although we collected around 120,000 papers, annotating such a vast dataset
is a labor-intensive and time-consuming process that requires significant expertise and
resources. To address these challenges, we sourced an existing annotated dataset that
closely aligns with our research focus.

Consequently, we leveraged the FAIR Database [5] as our ground truth reference,
which includes structured data on perovskite solar cells from over 42,000 devices man-
ually collected and extracted by 91 domain experts from approximately 7,400 papers.

"https://github.com/meta-1lama/llama-models/tree/main/models/1lama3._1
’https://openai.com/index/gpt-40-mini-advancing-cost-efficient-intelligence/
3https://dev.elsevier.com/

*https://dev.springernature.com/

Shttps://core.ac.uk/services/api

Shttps://info.arxiv.org/help/api

"https://developer.rsc.org/
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Due to the unavailability of all FAIR papers in our collected corpus, we applied
two filtering criteria:

* The paper must be in the FAIR database and our collected dataset.

* The paper should report between 1 and 4 devices to ensure that the most rele-
vant device information is contained within the main paper text rather than in
supplementary materials.

From the 2,884 papers available in FAIR, 1,325 matched both criteria, forming
the final dataset used in our experiments.

3.3.2. Attribute Selection

In this study, we selected 77 key parameters from the original 410 chosen in the
FAIR dataset to ensure a focused, high-impact dataset that captures the most critical
factors influencing perovskite solar cell efficiency and stability. Our selection prioritizes
parameters that (i) directly affect device performance, such as deposition procedures,
material compositions, and photovoltaic metrics; (ii) are commonly reported in the
literature, reducing inconsistencies and algorithmic errors when analyzing large datasets;
and (iii) enable comprehensive trend analysis, facilitating the identification of research
gaps and guiding the development of more efficient PSCs and modules. Limiting the
dataset to these essential attributes allows us to balance completeness with practicality,
ensuring reproducibility while streamlining data management and interpretation.

To better illustrate the categorization of data in our selected dataset, Figure 3.2
provides an overview of the distribution of attributes across different perovskite-related
parameters. This visualization highlights the structured classification of key features,
ensuring a well-balanced and representative dataset.

The following concisely justifies why our shortlist of 77 attributes is more focused
and practical than the 410 attributes in the FAIR dataset.

* Core Experimental Focus: Our selection concentrates on essential parame-
ters—deposition procedures, layer compositions, and key performance metrics
(JV, stability, EQE)—most relevant for assessing perovskite device performance.
In contrast, the full FAIR set includes extensive ancillary details (i.e., reagent
suppliers and solvent purity) that may not impact reproducibility or comparative
studies.

* Reduced Redundancy: The FAIR dataset lists multiple overlapping details (i.e.,
separate entries for deposition atmospheres, solvent mixing ratios, and environ-
mental conditions across various layers). In contrast, our shortlist consolidates
information to avoid duplication. This streamlining minimizes the risk of incon-
sistencies during data entry and analysis [70].

* Enhanced Usability and Clarity: our attribute set facilitates more precise data
analysis and interpretation by focusing on key process and performance param-
eters. This balance between compositional details and performance outcomes
ensures that users can more directly correlate fabrication parameters with device
metrics—a critical factor for reproducibility and meta-analysis.
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Figure 3.2. Categorization of our 77 selected attributes across different
Perovskite-related parameters.

* Practicality for Routine Reporting: While the FAIR dataset is designed to be
exhaustive for archival purposes, our shortlist is tailored for routine reporting and
comparative studies, ensuring that researchers are not burdened with extraneous
details. This efficiency is particularly beneficial when integrating data from
multiple sources or conducting high-throughput studies.

3.4. Information Extraction

In our work, we applied an information extraction approach that utilizes LLMs
with prompt engineering and fine-tuning techniques to extract key attributes related to
PSCs.

3.4.1. Prompt Engineering

Prompt engineering plays a crucial role in optimizing LLM outputs by strategi-
cally designing inputs that guide the model toward producing structured, contextually
relevant responses [71]. Well-crafted prompts significantly enhance their ability to ex-
tract information accurately. To systematically evaluate the impact of prompt engineer-
ing on our task, we experimented with three distinct strategies: Zero-Shot, Few-Shot,
and Chain-of-Thought (CoT’) prompting. Each of these methods offers distinct advan-
tages and helps mitigate various challenges associated with extracting information from
scientific literature. Our prompt engineering approach follows the guidelines provided
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by OpenAlI® to ensure clarity, precision, and structured reasoning in extracting complex
scientific attributes.

A critical consideration in prompt design is clear and unambiguous instruction.
LLM:s tend to perform better when they are explicitly directed toward the desired format,
scope, and level of detail. Furthermore, we ensured that our prompts adhered to best
practices such as delimiting key sections, specifying reasoning steps, and providing
structured output formats.

To ensure consistency across different runs, we designed all prompts to out-

put structured data in a predefined JSON schema, maintaining uniformity in extracted
attributes. This approach helps reduce variance in responses and simplifies post-
processing tasks. Our experiments were conducted using three LLMs: GPT-40-mini’,
LLaMA-3.1-70B!°, and Qwen-2.5-72B!!. This ensured that insights drawn from prompt
engineering generalize across multiple architectures.
To evaluate the impact of different prompting techniques, we conducted these exper-
iments using the development (dev) set. This dataset was selected to allow iterative
testing and refinement of prompt structures without influencing the final evaluation re-
sults. Using the dev set, we ensured that the observed performance improvements were
not biased by exposure to the test set, maintaining a clear separation between prompt
tuning and final model evaluation.

3.4.1.1. Zero-Shot Prompting

Zero-shot prompting is a minimal-intervention approach where the model is pro-
vided with task instructions but no specific examples. This method tests the pre-trained
capabilities of the LLM in understanding and extracting domain-specific attributes with-
out additional guidance.

You are an expert in extracting structured data from material science papers, specifically the PSCs.
You will receive a full paper in text format and a JSON schema.
Your task is to extract information on solar cell stack and method information for all device configurations described
in the paper.
Strictly follow the schema and output a valid JSON object.
If the paper describes multiple device configurations, output them as an array of JSON objects, where each object follows
the provided schema.
The output should be in the following format:
[ {{’Ref-DOI_number’: "doil", "device”: 1, ...}},
’Ref_DOI_number’: "doil"”, "device": 2, ... 1,
’Ref_DOI_number’: "doi2", "device": 1,
Follow these rules:
1. Carefully read the paper and identify all relevant details that match the schema fields.
2. Ensure each device configuration is represented as a separate JSON object with a unique Device”” number.
3. If a field cannot be determined from the text, set its value to ’Unknown” or an empty string ("") as specified in the
schema.
4. Ensure the output JSON object includes all fields from the schema, even if some are empty or unknown.
5. Do not add or remove any fields from the schema.
6. Format the output as a valid JSON object with proper indentation.
Provide your output strictly following the same structure for any new input, separating the devices.

Figure 3.3. Zero-Shot Extraction Prompt

A major advantage of zero-shot prompting is its efficiency, since no labeled
examples are required, it can be applied to unseen tasks without extensive fine-tuning.

8https://platform.openai.com/docs/guides/prompt-engineering
*https://openai.com/

Ohttps://www.1lama.com/
Mhttps://www.alibabacloud.com/product/qwen
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However, the primary challenge with this approach is the high variability in responses, as
the model may misinterpret vague instructions or generate outputs that are inconsistent
in format. In many cases, zero-shot prompting is prone to hallucinations, where the
model fills in missing details based on prior knowledge rather than strictly adhering to
the provided text.

We attempted to mitigate this by refining our prompt to explicitly instruct the
model to extract only the information present in the document, leaving unknown fields
as ”Unknown” rather than speculating. This adjustment significantly improved the
reliability of extracted attributes. Figure 3.3 presents the prompt used in our zero-shot
experiments.

You are an expert in extracting structured data from material science papers, specifically the PSCs.

You will receive a full paper in text format and a JSON schema.

Your task is to extract information on solar cell stack and method information for all device configurations described
in the paper.

Strictly follow the schema and output a valid JSON object.

If the paper describes multiple device configurations, output them as an array of JSON objects, where each object follows
the provided schema.

Follow these rules:

1. Carefully read the paper and identify all relevant details that match the schema fields.

2. Ensure each device configuration is represented as a separate JSON object with a unique Device”” number.

3. If a field cannot be determined from the text, set its value to ’Unknown’ or an empty string ("") as specified in the
schema.

4. Ensure the output JSON object includes all fields from the schema, even if some are empty or unknown.

5. Do not add or remove any fields from the schema.

6. Format the output as a valid JSON object with proper indentation.

Structure the output in JSON format, as shown in these examples.

few_shot_examples

Provide your output strictly following the same structure for any new input, separating the devices.

Figure 3.4. Few-Shot Extraction Prompt

3.4.1.2. Few-Shot Prompting

Few-shot prompting extends the zero-shot approach by incorporating demonstra-
tions—that is, a small set of manually curated examples—within the input prompt. By
seeing examples of correctly formatted extractions, the model gains a stronger under-
standing of expected outputs, reducing ambiguity and improving structured consistency.

The effectiveness of few-shot prompting stems from its ability to provide an im-
plicit training signal within the prompt itself. Instead of relying only on prior knowledge,
the model can align its responses with patterns present in the examples. We observed
that few-shot prompting significantly improved precision and recall, particularly for
attributes requiring multi-word extractions (e.g., chemical compositions, deposition
procedures).

One challenge with few-shot prompting is that the quality of selected examples
heavily influences performance. Poorly chosen or ambiguous demonstrations may in-
troduce biases or reinforce incorrect predictions. To ensure robustness, we carefully
chose examples that capture most of the cases, specifically, samples that cover single
and multiple devices. In this experiment, we used the same base prompt from the zero-
shot setup but supplemented it with a few representative samples to guide the model’s
responses. Figure 3.4 presents the prompt used in our few-shot experiment.
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You are an expert in extracting structured data from material science papers, specifically, the Perovskite solar
cells.
You will be provided with a full paper in text format and a JSON schema.
Your task is to extract information on solar cell stack and method information for all device configurations described
in the paper.
Strictly follow the schema and output a valid JSON object.
If the paper describes more than one device configuration, output them as an array of JSON objects, where each object
follows the provided schema.
The output should be in the following format:
[ {{’Ref-DOI_number’: "doil", "device”: 1, ...}},

’Ref_DOI_number’: "doil"”, "device": 2, ... 1,

’Ref_DOI_number’: "doi2", "device": 1, ...
Follow these rules:
1. Identify the Substrate Stack Sequence: Extract information about the substrate layers (e.g., "SLG — ITO”) and
their cleaning procedures.
2. Extract ETL Details: Identify details about the electron transport layer (ETL), including stack sequence, additives,
deposition methods, solvents, and thermal annealing conditions.
3. Extract Perovskite Details: Find details on perovskite composition, additives, thickness, deposition methods,
solvents, and any surface treatments.
4. Extract HTL Details: Locate the hole transport layer (HTL) stack sequence, additives, deposition methods, and
thermal annealing conditions.
5. }F)((itract Back Contact Details: Identify the back contact stack sequence, thickness, additives, and deposition
methods.
6. Extract JV and Stability Data: Capture JV test results (Voc, Jsc, FF, PCE) and stability measurements (temperature
range, atmosphere, PCE degradation).
7. Handle Missing Data: If any field cannot be determined, set its value to ”Unknown” or an empty string ("") as
specified in the schema.

Figure 3.5. COT Extraction Prompt

3.4.1.3. Chain-of-Thought (CoT) Prompting

Chain-of-Thought (CoT) prompting is a more advanced technique that instructs
the model to break down the extraction process into sequential steps, mimicking human-
like reasoning. Rather than expecting the model to produce structured output in a single
inference step, Col' prompts explicitly guide it through intermediate reasoning stages
before arriving at the final structured extraction. This approach is particularly beneficial
for tasks involving: hierarchical information retrieval where attributes are interconnected
(e.g., substrate stack sequences, multi-layer depositions), multi-step extractions where a
model needs to extract primary data before deriving secondary attributes, and ambiguous
references, where a model needs to correlate different parts of a document before making
an inference. Figure 3.5 presents the prompt used for our COT experiment.

3.4.2. Fine-tuning

Fine-tuning is a powerful technique that allows LLMs to specialize in extracting
structured information from domain-specific text. While prompt engineering optimizes
LLM outputs by guiding inference behavior, fine-tuning directly updates model param-
eters, making the model inherently more proficient in understanding the variations of
PSCs literature.

Beyond enhancing overall extraction proficiency, fine-tuning also addresses sev-
eral critical challenges associated with domain-specific information retrieval. One of its
most significant advantages is domain adaptation. As LLMs are typically pre-trained on
broad and diverse corpora, they often lack specialization in niche fields such as PSCs. By
fine-tuning on PSCs literature, models can recognize domain-specific terminology, for-
matting conventions, and understand intricate relationships between extracted attributes,
leading to more precise and contextually relevant extractions.

Another significant advantage of fine-tuning is improved consistency in model
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outputs. It trains the model to extract data in a structured format, following the same
patterns present in the fine-tuning data. This reduces inconsistencies and ensures that
extracted attributes remain stable across different queries and datasets.

To further enhance the performance of LLMs in extracting structured scien-
tific information, we initially fine-tuned GPT-40-mini and LLaMA-3.1-70B on a PSCs
domain-specific dataset. This fine-tuning process aimed to adapt the models to the
language, terminology, format, and structure commonly found in perovskite solar cell
literature, thus improving their ability to extract key attributes with higher consistency.
However, Qwen will not be fine-tuned due to the computational cost and the additional
financial fees.

The training and validation sets from our dataset were used for fine-tuning.
After fine-tuning, the test set—which remained unseen during training—was used for
evaluating the models’ performance, to ensure a fair and unbiased assessment.

3.5. Proposed Evaluation Methodology

Evaluating the effectiveness of materials science information extraction is a
complex task, particularly when dealing with unstructured data from research papers.
To achieve a comprehensive assessment, we employ a rule-based approach designed to
systematically evaluate structured attributes, taking into account exact matching, partial
matching, and normalization techniques.

Device attributes in PSCs literature are presented in diverse formats, includ-

ing structured tables, inline numerical values, and descriptive text. This variability
necessitates a robust evaluation framework that can accurately assess the correctness
of extracted information across various attribute types. To address this challenge, we
developed a custom evaluation algorithm that effectively handles both single-device and
multi-device cases.
For single-device evaluation, the system compares the extracted attributes against the
ground truth when a research paper describes only one device configuration. In contrast,
multi-device evaluation is required when multiple distinct device configurations are
reported within the same paper, necessitating an advanced matching mechanism to align
extracted devices with their corresponding ground-truth records.

3.5.1. Different Attribute Types Handling

Our evaluation algorithm processes the extracted attributes using a schema-
based comparison that incorporates various matching techniques, tailored to attribute
complexity. Given the diversity of scientific attributes, we implemented a flexible
matching strategy that includes:

* Normalization: The first step is done before matching. It standardizes inconsisten-
cies in terminology, abbreviations, and formatting using a predefined equivalence
mapping (e.g., mapping “False” — "No”, "TBP” — tert-Butylpyridine”, etc.).

* Exact Matching: It’s applied to highly structured attributes, such as numerical
values, material compositions, and processing parameters, where an exact corre-
spondence is required. For example, if the ground truth is ”Spin-coating” and
the prediction is ”Spin-coating”, the prediction is considered correct. However,
if the prediction is ”Drop-casting”, it would be marked as incorrect. Similarly, if
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the ground truth for Perovskite Composition Long Form is "MAPbI3”, and the
prediction is "MAPbI3”, this would be correct. However, if the predicted value is
"FAPDI3” or "MAPDI”, it would be incorrect. In the case of numerical attributes,
if the ground truth for Perovskite Deposition Thermal Annealing Temperature is
100°C and the prediction is 150°C, it is incorrect.

 Partial Matching: This technique evaluates whether key components of the pre-
dicted answer exist in the ground truth, enabling partial credit for predictions that
capture some, but not all, of the correct information. A prediction is considered
partially correct if the key terms present in the ground truth, even if they include
extra context. For instance, if the ground truth is “Thermal Evaporation” and
the prediction is ’deposited by thermal evaporation through a shadow mask”, the
prediction would be considered partially correct because it retains part of the
information (thermal evaporation) while introducing additional descriptive ele-
ments (through a shadow mask). In contrast, an exact match would require the
predicted response to be identical to the ground truth without any extra words or
modifications.

3.5.2. Multi-Device Evaluation

Extracting information from research papers on PSCs presents a unique challenge
due to the presence of multiple devices per publication. Unlike traditional information
extraction tasks, where a single entity is extracted per document, PSCs research often
describes multiple devices, each with distinct characteristics. This makes direct one-to-
one comparisons between extracted and ground-truth devices ineffective, as the number
of devices varies across papers.

To address this issue, we employ the Hungarian algorithm [72], [73] for optimal
device alignment. The Hungarian algorithm is an optimization algorithm designed
to solve the assignment problem in polynomial time. The algorithm ensures that the
best-matching extracted device is paired with its corresponding ground truth device,
preventing incorrect mappings that could skew evaluation metrics.

To visually represent this process, Figure 3.6 illustrates the application of the
Hungarian algorithm for multi-device evaluation. In the figure, one set of nodes repre-
sents the predicted devices (d1, d2, d3, etc.), while the other set represents the ground-
truth devices (gl, g2, g3, etc.). Edges between these nodes are weighted by the F}
scores, and the Hungarian algorithm seeks the matching that maximizes the sum of the
weights (F; scores) of the edges included in the matching.

Bold lines indicate the best-matched devices, while dashed lines represent other
possible matches with lower F7 scores. The figure illustrates various potential scenarios
for matching predicted devices with ground truth devices. These cases include scenarios
where the number of predicted devices matches the number of ground-truth devices, as
well as cases where there are more predicted devices than ground-truth devices or vice
versa.
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Figure 3.6. Illustration of the Hungarian algorithm applied to multi-device evaluation.
Predicted devices (d1, d2, etc.) are matched with ground truth devices (g1, g2, etc.)
based on £ scores. Bold lines indicate the best-matched devices, while dashed lines
represent other possible matches with lower Fj scores.

To perform this approach, we followed the following steps:
Step 1: Attribute-Level Evaluation Each extracted attribute undergoes a structured
comparison using three key matching strategies. For each attribute a, we compute
precision, recall, and Fi-score based on the overlap between the predicted and ground
truth attribute components.

The precision and recall for each attribute a in a given device ¢ are computed as
follows:

TP(a, i
Precision(a, i) = T(a.) (—ic—%l;l))(a B (3.1
Recall(a, i) = — 0% 7) (3.2)

~ TP(a,i) + FN(a,1)

where:
* TP(a, ) (True Positives) counts the correctly predicted components of attribute a,

* FP(a,i) (False Positives) counts predicted components that do not exist in the
ground truth, and

* FN(q, i) (False Negatives) counts ground truth components that were not extracted.
Using these, the Fi-score for each attribute @ in device ¢ is computed as:

2 - Precision(a, 1) - Recall(a, 7)

Fi(a,i) = (3.3)

Precision(a, 7) + Recall(a, )

The overall attribute-level performance is then measured as the mean F}-score across
all evaluated attributes:

N
1 .
Sue = ;‘ Fy(a,1) (3.4)

where N is the total number of attributes evaluated, and a represents an individual
attribute.
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Step 2: Pairwise Matching of Extracted vs. Ground Truth Devices: For each
extracted device d; in a given paper, we compute a pairwise similarity score against
every ground truth device g; in the same paper. The similarity is measured using the
F-score, which balances precision and recall.

The precision and recall for an extracted device d; and a ground truth device g;
are calculated as:

2., TP(a; 3, 5)

> TP(a,1,j)
>-a (TP(a,4,j) + FN(a, 1, j))

Precision(d;, g;) =

(3.5)

Recall(d;, g;) =

(3.6)

where:

* TP(a, 1, j) represents the correctly predicted components for attribute @ in device
d; that match the ground truth device g,

* FP(a, i, j) counts predicted components that do not exist in the ground truth, and
* FN(a, 1, j) counts ground truth components that were not extracted.
Using these, the device-level F-score is computed as:

2 - Precision(d;, g;) - Recall(d;, g;)
Precision(d;, g;) + Recall(d;, g;)

Fi(d;, g5) = (3.7)

Since the Hungarian algorithm requires a minimization objective, we define the
cost function as the negative Fi-score:

COSt(di, g]) = —F1 (dz, gj) (38)

This ensures that the optimization process maximizes the similarity between
matched devices by minimizing the total cost.
Step 3: Applying the Hungarian Algorithm: The Hungarian algorithm computes the
optimal pairing based on the F} scores, ensuring that each predicted device is matched
with a ground truth device that maximizes the F} score of the pairing. This step is
critical as it avoids incorrect device matching, which can lead to skewed evaluation
metrics.

To determine the best assignment of predicted devices to ground truth devices,
we formulate the optimization problem as follows:

A* = arg mjn Z Cost(d;, g;) (3.9
(di,g;)€A

where A* represents the optimal assignment of predicted devices d; to ground truth
devices g;. The algorithm selects A* such that it minimizes the total cost, which is
the sum of negative [} scores, effectively maximizing overall similarity. Each element
(d;, g;) in A* is a pairing of a predicted device d; with a ground truth device g;.

Once the optimal assignment of predicted devices to ground-truth devices is
established using the Hungarian algorithm, we address cases where the number of
predicted devices differs from the number of ground-truth devices. If the model predicts
more devices than exist in the ground truth, the unmatched predicted devices are treated
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as false positives (FP). Conversely, if the model predicts fewer devices than exist in the
ground truth, the missing devices are treated as false negatives (FN) as they correspond
to devices that should have been extracted but were not identified by the model.

Step 4: Paper-Level Multi-Device Evaluation: Once the optimal device matches are
established, we compute paper-level precision, recall, and F}-score based on the sum of
the matched device-level F scores:

Z(di,gj)EA* Fi(d;, gj)

Ppaper = |D‘ (3.10)
Zdi Ve A* Fl(diag')
Rpaper = ( 79])€|G| ’ (311)
2- Pa er R aper
Flpaper = = = (312)

P, paper + Rpaper

where |D| and |G| denote the total number of predicted and ground truth devices,
respectively.

3.5.3. Best I'] Score

To better assess the quality of extraction independent of quantity estimation,
we also compute the best device Fi-score, defined as the highest F-score among all
matched device pairs:

Fipes = Fy(d;, g; 1
Thes = MAX 1(ds, 95) (3.13)

3.5.4. Champion Device Evaluation

In addition to evaluating all extracted devices, we conduct an evaluation focusing
on the champion device— the best-performing device reported in each paper. The cham-
pion device is identified based on the highest PCE of their JV reverse scan, selecting the
maximum value of reverse scan measurements in the ground truth. For this evaluation,
models are prompted to extract only the champion device from the paper. This aims to
analyze how well LLMs perform in both single and multiple-device extraction.
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CHAPTER 4: EXPERIMENTAL EVALUATION
In this chapter, we present the experimental setup of our work and discuss the
results of the research questions we aim to address.

4.1. Experimental Setup

This section details the dataset processing and outlines the setup for prompt
engineering, fine-tuning experiments, and evaluation procedures.

4.1.1. Data Splitting & Pre-processing

We divided the dataset based on the number of devices per paper to ensure robust
evaluation and generalization. We used a stratified approach to maintain a balanced
representation across training, testing, and development sets, dividing the dataset as
follows:

* Training set (60%) — Used for fine-tuning experiments.
* Development set (20%) — Used for choosing the best prompt technique.
* Testing set (20%) — Used for evaluating models performance.

This strategy was designed to evenly distribute papers reporting single devices and those
reporting multiple devices across all dataset splits, ensuring comprehensive testing and
training coverage.

Our dataset comprised documents in both XML and PDF formats. We converted
all documents to plain text to facilitate uniformity and compatibility with our models.
We utilized PyPDF2! library for converting PDF files and ElementTree? for parsing
and converting XML files. In addition to format conversion, we removed non-essential
sections, such as references and acknowledgments, from the documents. The cleaned
and converted text files were used as input for our models. We chose not to chunk the
papers, as our employed models can handle significant input contexts.

4.1.2. Models

For our experiments, we selected three LLMs: GPT-40-mini’>, LLaMA-3.1-
70B*, and Qwen-2.5-72B>. GPT-40-mini, developed by OpenAl, is a lightweight version
of GPT-40 designed for efficiency while maintaining strong language understanding
capabilities. It is accessed through an API and supports a context length of 128K
tokens, allowing it to process full research papers without segmentation.

LLaMA-3.1-70B, an open-source model from Meta, supports a 128K token
context window, making it suitable for long-form document processing.

Lastly, Qwen 2.5 72B, developed by Alibaba Cloud®, is optimized for fast infer-
ence and scalability. It supports a larger context length of up to 32,768 tokens, making
it ideal for processing long scientific documents without truncation.

"https://pypi.org/project/PyPDF2/
Zhttps://docs.python.org/3/1library/xml.etree.elementtree.html
3https://openai.com/

*https://www.1llama.com/
Shttps://www.alibabacloud.com/product/qwen
Shttps://www.alibabacloud.com/product/qwen
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Both LLaMA-3.1-70B and Qwen-2.5-72B are large-scale models that require
significant computational resources for local deployment. To address this, we accessed
these models through the Together.ai API 7, a platform that hosts and manages access
to large language models developed by other organizations, such as Meta and Alibaba
Cloud. It provides seamless integration and eliminates the need for extensive local
infrastructure.

These models were selected based on their architecture, context length, fine-
tuning capabilities, and API accessibility, allowing us to explore both prompt-based and
fine-tuned approaches for materials science data extraction.

4.1.3. Baselines

To evaluate the effectiveness of our approach, we compare it against two recent
SOTA works in automated information extraction from PSCs literature: Valencia et al.
[6] and Xie et al. [7]. Since both baselines employ different evaluation methodologies,
we re-evaluate our model using the same attribute sets and evaluation metrics reported
in these studies.

4.1.4. Fine-tuning

The fine-tuning process was conducted using the respective APIs of the platforms
hosting each model. For GPT-40-mini, we utilized the OpenAl API, which provides
direct access to OpenAl’s models. For LLaMA 3.1 70B, we employed the Together.ai
API. By relying on these APIs, we eliminated the need for local hosting of large models.
During fine-tuning, we relied on the default hyperparameters provided by the platform,
allowing us to evaluate the models’ out-of-the-box adaptability to domain-specific data
without additional tuning.

The results of this fine-tuning process are compared against the best-performed
prompt from the prompting-based approach to determine the most effective strategy for
structured data extraction, as discussed in the following sections.

4.1.5. Evaluation Metrics

To quantitatively assess extraction performance, we compute the following stan-
dard metrics:

* Precision: Measures the proportion of correctly extracted attributes out of all
extracted attributes.

* Recall: Captures how many of the ground truth attributes were successfully
extracted.

* Fj Score: A harmonic mean of precision and recall.

* Best F} Score: Selects the best F; score among all predicted devices per paper
and then computes the average across all papers, reflecting the model’s ability to
retrieve an accurate device even when multiple predictions exist.

"https://www. together.ai/
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» Paper-Level F; Score: Computes the F; score per paper by aggregating matched
device scores using precision and recall at the document level.

* Champion [} Score: Computes the F; score of the champion device per paper.
Then the score is averaged across all papers to evaluate the model’s ability to
extract the Champion device from each study.

In addition to these standard evaluation metrics, we introduced an attribute-level analysis,
where the F7 score is computed separately for each extracted attribute. For each attribute
a;, we compute precision by measuring the proportion of correctly extracted components
relative to all extracted components. Recall is calculated by determining how many of
the actual ground truth components were successfully extracted. The Fj score for each
attribute is then computed as the harmonic mean of precision and recall. This allows
us to point out specific attributes that are more challenging to extract and analyze their
individual extraction performance across different cases.

4.2. Experimental Results

In this work, we aim to answer the following research questions:

RQ1: How do different prompt engineering techniques (few-shot, zero-shot, CoT) impact
extraction performance?

RQ2: How does extracting all devices affect overall extraction performance compared
to focusing on one device only?

RQ3: Is fine-tuning more effective than extensive prompt engineering for material sci-
ence data extraction?

RQ4: How does our approach compare to SOTA?

4.2.1. Effect of Prompt Engineering on Extraction Performance (RQ1)

To assess the impact of prompt engineering, we compare the performance of
zero-shot, few-shot, and Col prompting across three LLMs, namely GPT-40-mini,
LlaMa-3.1-70B, and Qwen-2.5-72 B. The evaluation is conducted on the development
set, assessed through precision (P), recall (R), F; score, and best device F; (Best Fi)
metrics. Table 4.1 shows the performance of each model for all devices vs the champion
device experiments presented in table 4.2. The results show that the few-shot approach
outperforms other prompting techniques, achieving Fj scores of 0.7735 (Llama) and
0.7687 (Qwen) across all devices, with particularly strong gains in recall (Llama: +25.3%
vs zero-shot).

Apparently, all models show improved performance when focusing on champion
devices, with Llama achieving F of 0.8066 (+17.4% vs all-device performance).
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Table 4.1. Impact of Prompt Engineering on Multi-Device Extraction. This table
presents the precision (P), recall (R), and F; scores for Zero-Shot, Few-Shot, and CoT
prompting across GPT-40-mini, LLaMA-3.1-70B, and Qwen-2.5-72 B. The evaluation
is conducted on the development set for all devices, using multi-device extraction.

Model P R F; Best F;
Zero-Shot
GPT 0.587 0.528 0.526 0.646
Llama 0.673 0.464 0.511 0.691
Qwen 0.662 0.451 0.502 0.671
Few-Shot
GPT 0.690 0.622 0.619 0.767
Llama 0.620 0.717 0.633 0.774
Qwen 0.619 0.701 0.624 0.769
CoT
GPT 0.615 0.522 0.537 0.653
Llama 0.671 0.475 0.517 0.697
Qwen 0.673 0.453 0.510 0.675

Table 4.2. Impact of Prompt Engineering on Champion-Device Extraction. This table
presents the precision (P), recall (R), and F; scores for Zero-Shot, Few-Shot, and CoT
prompting across GPT-4o0-mini, LLaMA-3.1-70B, and Qwen-2.5-72B. The evaluation
is conducted on the development set for champion device extraction only.

Model P R Fy
Zero-Shot
GPT 0.702 0.580 0.630
Llama 0.746 0.617 0.672
Qwen 0.672 0.684 0.671
Few-Shot
GPT 0.740 0.744 0.738
Llama 0.829 0.795 0.807
Qwen 0.747 0.815 0.773
CoT
GPT 0.686 0.610 0.640
Llama 0.719 0.655 0.678
Qwen 0.680 0.688 0.675

The results demonstrate distinct performance across various prompting tech-
niques, highlighting the strengths and trade-offs of each approach. Zero-shot prompting,
despite not using examples, achieves moderate precision while maintaining notably good
Best F7 scores, indicating that it is capable of extracting well-structured information for
at least some devices. In particular, LLaMA achieves a Best £} of 0.6905 in the multi-
device setting. However, recall remains a major limitation, as observed with Qwen (R
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= 0.4511) and LLaMA (R = 0.4643), suggesting that without explicit demonstrations,
models struggle to consistently capture all relevant details across multiple devices.

On the other hand, few-shot prompting significantly enhances extraction accu-
racy, offering substantial improvements across all metrics. Providing the model with
structured examples allows it to better generalize to device configurations and maintain
consistency across extractions. The few-shot approach achieves the highest overall F}
scores, with LLaMA reaching 0.6329 for multi-device extraction. More importantly,
the Best F) scores also improve, reaching 0.7735 for LLaMA, 0.7687 for Qwen, and
0.7667 for GPT, confirming that the alignment between the extracted and ground-truth
devices is optimized when examples guide the model’s output structure. When focusing
on the champion device only, few-shot prompting further enhances extraction accuracy,
with LLaMA achieving an [ of 0.8066, representing a 17.4% increase compared to its
multi-device extraction.

As part of our experimentation, we tested one-shot, two-shot, and three-shot
prompting to determine the optimal number of examples required for effective extrac-
tion. Our findings indicate that three-shot prompting consistently delivered the best
performance across all models. As a result, we applied the three-shot setting in all our
experiments.

Chain-of-Thought (CoT) prompting, designed to encourage stepwise reason-
ing, shows performance improvements over zero-shot but does not surpass few-shot
prompting. The structured reasoning process enhances recall over zero-shot learning,
particularly for models like GPT and LLaMA, which infer missing details by reasoning
through multiple steps. However, without explicit examples, CoT still lags behind few-
shot prompting in precision and consistency, as models struggle with ambiguous cases
where attribute formulations vary. Moreover, Col prompting performs competitively in
terms of Best F} scores, reaching 0.6970 for LLaMA, which is higher than zero-shot but
lower than few-shot, reinforcing that CoT improves attribute alignment but does not fully
address recall limitations. This can support the benefit of applying a hybrid approach
that combines both COT prompts with few-shot examples.

4.2.2. Impact of Extracting All Devices vs. One Device Only (RQ2)

To address RQ2, we analyze how evaluation metrics, such as precision, recall,
and F3 score, are influenced by the complexity of multi-device reporting. Unlike single-
device extraction, where the evaluation focuses on matching attributes for a single ground
truth device, multi-device extraction introduces an additional layer of complexity. Here,
models should correctly identify multiple devices within a single publication while
maintaining high attribute accuracy for each. The challenge lies in ensuring that the
extracted devices align with the actual number of devices reported in the research papers,
as discrepancies in device count significantly impact evaluation metrics.

We observe that performance variations primarily stem from the alignment be-
tween the predicted and actual number of devices reported in papers. A model that
extracts an incorrect number of devices, even with high attribute accuracy, may still
suffer from penalized recall or precision scores due to mismatches in the expected
device count. Given that traditional F; score calculations depend on both precision
(correctly extracted attributes per predicted device) and recall (correctly extracted at-
tributes per ground truth device), discrepancies in device counts negatively influence
overall extraction performance.
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To better assess the quality of information extraction independent of errors in
quantity estimation, we calculated the Best F; metric, which evaluates the highest F}
score achieved for any single extracted device within a paper and then averages this across
the dataset. This approach isolates errors stemming from device count mismatches and
focuses on evaluating attribute extraction accuracy independent of quantity estimation
errors. Notably, this adjustment reveals significant improvements in performance, such
as +18% increase in Best F; score when using the LLaMA model with the COT and zero-
shot experiments, and +14.1% increase in Best F score with the few-shot experiment.
This suggests that once models correctly recognize the existence of a device, they tend
to extract its attributes with reasonable effectiveness.

4.2.2.1. Champion Device

To better understand the performance of LLMs in extracting a single device per
research paper, we introduce a focused evaluation on the Champion Device reported in
the study. Unlike the multi-device extraction setup, which requires capturing all devices
described in a paper, this evaluation isolates the extraction process to the champion
device only.

For this evaluation, the models were prompted to extract only the champion
device per paper. The same prompting techniques—zero-shot, few-shot, and Chain-of-
Thought (Col')—were applied, and the fine-tuned GPT model was also assessed under
this setting.

As shown in Table 4.2, models exhibit notable improvements in extraction per-
formance when focusing only on the champion device. Compared to the multi-device
setting, all models achieve higher F scores, with LLaMA reaching 0.807 (+17.4% vs.
multi-device).

Few-shot prompting consistently delivers the best results across all models,
confirming the importance of in-context examples for structured data extraction. LLaMA
(Few-Shot) achieves the highest champion-device [} score of 0.807, outperforming GPT
and Qwen.

Furthermore, fine-tuning demonstrates substantial performance, with GPT-Fine-
Tuned achieving F} of 0.9006, marking a 16.2% improvement over the best-performing
prompt.

4.2.3. Fine-Tuning vs. Prompt Engineering (RQ3)

To answer this research question, we examined the effectiveness of domain-
specific fine-tuning compared to optimized prompt engineering, observing significant
performance enhancements. As shown in Tables 4.3 and 4.4, we present a comparison
of the effectiveness of both approaches using the test dataset, where we selected the
best-performing prompt from three different prompts and compared its results to those
of fine-tuning.

The fine-tuned GPT model demonstrates remarkable F scores, achieving 0.9006
for champion devices, and 0.7870 for all devices, which represents a 16% and 17%
improvement over the best prompt, respectively. Similarly, the fine-tuned Llama model
also demonstrates remarkable performance, with Fj score of 0.8902 for champion
devices and 0.7674 for all devices, showing an improvement of 10.8% and 13.5% over
the best prompt, respectively.
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Furthermore, the Best F} score of 0.9098 for the fine-tuned GPT model and
0.899 for the fine-tuned Llama model suggest near-optimal extraction performance
when devices are accurately identified, indicating that most discrepancies arise from the
detection of the ground truth devices rather than from the extraction of their attributes.
Notably, 91% of devices correctly identified by GPT and approximately 90% by Llama
are extracted with a high accuracy.

Those results demonstrate that fine-tuning (for both open- and closed-source
LLMs) is the most effective approach for extracting materials science information, while
also highlighting the need for an automated extraction pipeline that minimizes human-
induced errors and provides consistent, scalable data extraction for PSCs research.

Table 4.3. Comparison of Fine-Tuning vs. Prompt Engineering for Multi-Device
Extraction. The best-performing prompt (from zero-shot, few-shot, and
chain-of-thought) is reported for each model. Fine-tuning results are provided for GPT
on all extracted devices.

Model P R F, Best F;
All Devices
GPT 0.609 0.711 0.618 0.766
Llama 0.683 0.648 0.631 0.767
Qwen 0.602 0.707 0.613 0.770
Fine-Tuning
GPT 0.817 0.828 0.787 0.910
Llama 0.811 0.799 0.7674 0.899

Table 4.4. Comparison of Fine-Tuning vs. Prompt Engineering for Champion Device
Extraction. The best-performing prompt (from zero-shot, few-shot, and
chain-of-thought) is reported for each model. Fine-tuning results are provided for GPT
on champion device extraction.

Model P R F,
Champion Device

GPT 0.7501 0.7400 0.7392
Llama 0.8329 0.7868 0.8020
Qwen 0.7472 0.8175 0.7753

Fine-Tuning

GPT 0.9067 0.8988 0.9006

Llama 0.9177 0.8699 0.8902

4.2.3.1. Attribute-level Evaluation

To gain deeper insights into the effectiveness of the fine-tuned model, we evalu-
ated its extraction performance at the attribute level. This analysis allows us to identify
which attributes are extracted with high accuracy and where the model tends to fail,
providing valuable information for future enhancements. To assess the effectiveness
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of fine-tuning for each attribute, we computed the £} score per attribute, measuring
precision and recall variations across different extracted fields. All results reported in

this sub-section are based on the outputs of the GPT fine-tuned model.

As illustrated in Figures 4.1 and 4.2, the majority of attributes achieve high £}
scores, demonstrating the model’s effectiveness in structured data extraction. Notably,
several attributes, such as ”Cell_semitransparent_wavelength_range” and “Perovskite_-
surface_treatment_before_next_deposition_step”, achieve perfect or near-perfect extrac-

tion (F = 1.0).

Histogram of F1 Scores for Attributes Sorted by Value
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Figure 4.1. Per-attribute F) score analysis of the fine-tuned GPT. The histogram
presents the Fj scores for each extracted attribute, highlighting variations in model

performance across different attribute categories.
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Heatmap of F1 Scores by Attribute
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Figure 4.2. Heatmap representation of F} score for each extracted attribute in PSCs
literature. The color intensity reflects extraction performance, with higher scores
indicating better attribute extraction accuracy.

On the other hand, some attributes exhibit moderate to lower extraction perfor-
mance. Among the least accurately extracted attributes are ”JV _test_atmosphere” (F =
0.5208), ”JV reverse_scan_Jsc” (F; = 0.5811), and “Perovskite_deposition_synthesis_-
atmosphere” (F; = 0.6301).

Additionally, attributes related to electrical performance metrics (e.g., "JV _-
reverse_scan_PCE”, ”JV _reverse_scan_Voc”, and "EQE _measured”) exhibit relatively
lower F) scores compared to material composition and structural attributes. Inter-
estingly, material composition-related attributes (e.g., “Perovskite_composition_long_-
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form”, ”Perovskite_additives_compounds”, and ”Perovskite_deposition_thermal _anneal-
ing_temperature”).

Overall, these findings highlight areas where the model performs exceptionally
well and areas where further refinements are necessary. Improving the extraction of
performance-related attributes and processing conditions could enhance the complete-
ness and usability of extracted data for scientific analysis. Future work may explore
techniques such as schema adjustments, hybrid rule-based post-processing, or addi-
tional fine-tuning with accurate and correct annotations to enhance the accuracy of
attribute-level extraction further.

4.2.4. Comparison with SOTA (RQ4)

To objectively evaluate the effectiveness of our approach, we conduct a compar-
ison with two recent state-of-the-art (SOTA) works in PSCs information extraction: [6]
and [7].

Both SOTA works focus only on single-device extraction and do not account
for multi-device cases. In contrast, our approach is designed to handle multi-device
scenarios by extracting and evaluating all reported devices from each paper. To ensure
a fair comparison with the SOTA models, we restrict this evaluation to the champion-
device extraction results from the fine-tuned GPT model.

The set of attributes used in [7] is entirely contained within our selection, making
it a direct subset. In contrast, the attributes chosen in [6] are also included in our dataset
(except for one attribute, namely "HTL_annealing parameters”) but are structured dif-
ferently. Their approach decomposes specific attributes into multiple separate fields,
whereas our schema consolidates them into single unified fields. A key example of this
structural difference is the representation of perovskite composition. In [6], this attribute
is split across several separate fields:

”Perovskite_composition_short_form, Perovskite_composition_a_ions, Per-
ovskite_composition_a_ions_coeflicients, Perovskite_composition_b_ions, Per-
ovskite_composition_b_ions_coefficients, Perovskite_composition_c_ions, and
Perovskite_composition_c_ions_coefficients”.

In our schema, all this information is captured within a single attribute, namely, ”Per-
ovskite_composition_long form”.

We developed a custom code that automatically decomposes our unified attributes
into the equivalent attributes used in [6]. This step enables the direct alignment of
extracted values between approaches, thereby eliminating structural discrepancies that
could otherwise skew the evaluation. Table 4.7 provides a visual representation of the
attribute selections across all three approaches.

Although the work of Valencia et al. [6] employs an attribute-level evaluation
methodology, where per-attribute scores are averaged to assess extraction performance,
this approach still differs in dataset curation, annotation schema, and attribute definitions,
preventing a direct one-to-one comparison.

On the other hand, the work of [7] computes evaluation metrics using an ag-
gregated approach, where precision, recall, and F} scores are calculated based on the
total number of correctly extracted values across all attributes. This leads to a different
distribution of evaluation results, making direct comparison unfair. We recalculated our
evaluation metrics using the same aggregated approach employed by [7]. As shown
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in Table 4.5, our approach outperforms the method proposed by [7] across all metrics,
achieving higher precision, recall, and F;.

Table 4.5. Comparison of our approach with Xie et al. [7]. The evaluation follows the
aggregate-based computation and the same set of attributes used in their work.

Attributes Our Work Xie et al. [7]
P R Fy | R Fy
Xie et al. Attributes  0.906 0.899 0.902 0.883 0.861 0.871

In addition to this comparison, we also highlight a key contrast in the effectiveness
of direct prompting techniques. In [7], the authors reported that direct prompting using
GPT-3.5 yielded poor performance, particularly for the IE task, where an Fj score of
only 28.7% was achieved. They concluded that direct prompting was unreliable for
structured data extraction and suggested that fine-tuning was necessary for obtaining
meaningful results. Table 4.6 summarizes this comparison.

Table 4.6. Comparison of state-of-the-art direct prompting results with our optimized
prompt engineering techniques. The evaluation follows the aggregate-based
computations used in the baseline work. This experiment was conducted on the
development set.

Model Prompting Technique P R Fy
GPT-3.5 [7] Direct Prompting 0.226 0.430 0.287
Zero-Shot 0.738 0.499 0.595
GPT Few-Shot 0.782 0.703 0.740
CoT 0.720 0.558 0.629
Zero-Shot 0.719 0.579 0.641
Llama Few-Shot 0.848 0.761 0.802
CoT 0.742 0.554 0.635
Zero-Shot 0.701 0.627 0.662
Qwen Few-Shot 0.804 0.785 0.795
CoT 0.701 0.630 0.663

However, our results challenge this conclusion. By carefully designing effective
prompts, we demonstrate that direct prompting can achieve significantly better results.
Specifically, with a simple 3-shot prompting approach, we obtained an F} score of 80%
for the champion device extraction. Moreover, while few-shot prompting achieves the
highest results, even zero-shot and CoT prompting demonstrate exemplary performance.
Notably, Qwen achieves around 66% in both COT and zero-shot, while LLaMA achieves
64.14% in zero-shot and 63.46% in Col prompting.

In future work, we plan to apply the evaluation methodologies used by both SOTA
approaches to our dataset. By re-evaluating our extraction pipeline under their specific
evaluation frameworks, we can directly assess how our approach performs within their
constraints.

Rather than comparing raw numbers only, we additionally focus on methodolog-
ical advancements that differentiate our approach:
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* Multi-Device Extraction: Unlike prior works that primarily extract a single device
per paper, our model is designed to handle multiple devices while maintaining
per-device accuracy.

* Schema Generalization: Our schema encompasses a broader range of attributes,
providing a more comprehensive representation of PSC literature.

* Prompt Engineering vs. Fine-Tuning: While previous studies emphasize fine-
tuning, we demonstrate that optimized prompting can achieve competitive perfor-
mance, offering a more scalable approach.

By emphasizing these methodological aspects rather than direct performance numbers,
we provide a more balanced and informative comparison, avoiding misleading interpre-
tations due to dataset discrepancies. Future work should explore benchmarking under a
unified dataset.
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Table 4.7. Attributes comparison with state-of-the-art works. The symbol v* denotes
supported attributes, while x indicates attributes that are not supported.

Attribute Name Our Work  Valenciaetal. [6] Xie et al. [7]
Ref_DOI_number

Cell_stack_sequence

Cell_area_measured
Cell_number_of_cells_per_substrate

Cell_architecture

Cell_flexible

Cell_semitransparent
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Module
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Module_area_effective

Substrate_stack_sequence
Substrate_cleaning_procedure

ETL _stack_sequence
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ETL_deposition_procedure

ETL_deposition_solvents
ETL_deposition_reaction_solutions_concentrations
ETL_deposition_thermal_annealing_temperature
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Perovskite_dimension_2D

Perovskite_dimension_3D
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Perovskite_thickness
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Attribute Name

Our Work

Valencia et al. [6]

Xie et al. [7]

Stability_atmosphere
Stability_time_total_exposure
Stability_PCE_initial _value
Stability_PCE_end_of_experiment
Stability_PCE_T80

Outdoor_tested
Stability_average_over_n_number_of_cells
Perovskite_composition_short_form
HTL _additives_compounds
Backcontact_additives_compounds
Backcontact_deposition_procedure
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CHAPTER 5: CONCLUSION AND FUTURE WORK
5.1. Conclusions

In this thesis, we presented an automated information extraction pipeline for
PSCs research, addressing the challenges posed by multi-device reporting in scientific
literature. Our approach leverages LLMs with prompt engineering and fine-tuning to ex-
tract structured data from PSCs studies. We introduce the first LLM-based approach for
extracting data from multiple devices per publication, ensuring that each device config-
uration is accurately represented. Furthermore, we are the first to develop an evaluation
framework capable of assessing both single-device and multi-device extractions. This
framework effectively aligns extracted devices with their ground truth, overcoming the
many-to-many matching problem in PSCs research. Additionally, we carefully selected
and defined a broad set of attributes most relevant to PSCs researchers, ensuring that the
extracted data is both scientifically valuable and practically applicable.

Our experiments demonstrate that the proposed pipeline outperforms existing
approaches, providing a scalable, reliable, and structured solution for automated data
extraction and evaluation. The results demonstrate the effectiveness of the proposed
pipeline, achieving [} score of 90.06% for champion-device extraction, F; score of
78.70% for multi-device extraction, and a best F score of 90.98% for the best extracted
device in multi-device cases. Fine-tuning significantly enhances extraction performance,
making LLLMs more specialized and accurate for PSCs data. At the same time, prompt
engineering proved to be a strong alternative approach, achieving good results through
carefully designed prompts. This work lays a strong foundation for automated structured
data extraction in materials science, with potential applications extending beyond PSCs
to other domains in the field.

5.2. Future Work

Despite significant progress in automating information extraction and evaluation
from PSCs literature, several areas can be further enhanced. One promising approach
is to improve the evaluation framework by incorporating LLM-based evaluators that
assess extraction correctness through semantic reasoning. This enhancement would
reduce reliance on manual annotations and enhance the robustness of evaluation by
considering contextual and implicit relationships within the extracted attributes.

Additionally, scientific publications often present critical information not only
in textual descriptions but also in figures, tables, and equations. Traditional text-
based extraction approaches may overlook valuable data embedded in these non-textual
elements. A future direction involves integrating multimodal extraction techniques to
extract structured data from both text and visual components. This could improve
extraction completeness and accuracy, particularly for attributes reported exclusively in
graphical representations or tabular formats.

Moreover, in this work, we limited our extraction to papers that contain up to
four devices. Expanding the threshold to include publications with a higher number
of devices could further validate the scalability of our approach and enhance dataset
coverage. Additionally, many PSCs studies report essential experimental details in
the supplementary information rather than in the main text. Including supplementary
information in the dataset would provide a more holistic extraction, capturing missing
details and improving overall data completeness.

Finally, while our methodology has been designed explicitly for PSCs research,
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the principles and techniques developed in this work can be extended to other domains
in materials science.
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