Research 101: How to Pick a Good Research Problem

Nasir Rajpoot

Department of Computer Science & Engineering

Qatar University

October 14, 2014

Talk Outline

جامعة قطر Qatar university

Motivation

- What is a Research Problem?
- Key Ingredients of a Good Research Problem

- The perils
- Potential rewards
- Conclusions

The Backdrop

 Continuation of two excellent talks given by Dr Tamer Elsayed

One of the most important decisions in your
 PG studies

- Share others' ideas and my thoughts
- Have a live discussion about the matter

Research Problem?

- A problem that needs to be researched
 - Fills a gap between an actual real-world situation (or our understanding of it) and the desirable or the ideal state of affairs (human knowledge)
- Sounds very simple, but can be a Big Problem ©
- Who identifies them?
 - Readymade: Proposed by the potential advisor(s)
 - Grand Challenges & Open Problems: Identified by a group of leading researchers (eg, a global consortium) or a national / international funding agency
 - Identified by your own research or observation(s)

MARRIAGE vs. The Ph.D.

Marriage

7.5 years

A proposal

Culminates in a ceremony where you walk down an aisle dressed in a gown:

Typical Length:

Begins with:

Ph.D.

7 years

A thesis proposal

Involves exchange of:

Vows

Know-how

Until death do you part?

If you're lucky

If you're lazy

WWW.PHDCOMICS.COM

A Good Research Problem

- Working on a good research problem should:
 - Be intellectually challenging
 - Be an enjoyable experience
 - Help you grow in confidence and self-expression
- ○ − Be rewarding in the end

Key Ingredients

Listed later in the talk

- Based on some theories
- The Topic model (Patterson & Eades)
- 11 The Expertise-Domain matrix
 - The Feasibility-Interest matrix (Uri Alon)

The Topic Model

Independent topic vs Part of a team

Dangerous vs Safe

Narrow & deep *vs* Wide & shallow

Independence

Independent topic

<u>Advantages</u>

- Not depending on support from anyone else
- More exciting for some people

<u>Disadvantages</u>

- Funding unlikely
- Dangerous at examination time

Part of a team

<u>Advantages</u>

- Better support from colleagues as well as your supervisor
- Good chance of funding

<u>Disadvantages</u>

Can be boring for some people

Dangerous vs Safe

Dangerous

- May lead nowhere
- May be uncompetitive
- Can be satisfying for some people
- Funding unlikely

Safe

- Can be satisfying for some people
- More chance of funding

Narrow vs Wide

Narrow and deep topic

<u>Advantages</u>

- More chance of pushing the boundary of knowledge
- More exciting

Disadvantages

- Your "model" may be too abstract and unrealistic
- It's hard to choose the variable parameters

Wide and shallow topic

<u>Advantages</u>

- Realistic
- Good training for industrial research

<u>Disadvantages</u>

- Mostly boring, like a collection of honours theses
- Unlikely to contribute a lot

Expertise vs Problem Domains

0101	Big Data	Social Networks	Bio- informatics	Traffic Accidents
Statistics				
Data Mining				
Machine Learning				
Data Analysis				

The Expertise vs. Problem Domains (E-PD) Matrix

The E-PD Matrix

- ✓ Good for scoping potential projects
- Only considers existing (not acquirable) expertise and potential problem/application domains
 - Does not take into account related social aspects such as self-motivation, group dynamics, time etc
 - Does not take into account feasibility, an important factor

Feasibility vs Interest

Uri Alon, 2009

Feasibility

جامعة قطر Qatar university

- Feasibility can be gauged in terms of the following 3 types of factors:
 - 1. Background knowledge/skills required
 - 2. Availability of resources:
 - Computational resources required
 - Minimum/Maximum time required
 - Data availability
 - 3. Availability of Required Personnel:
 - Team members
 - Collaborators
 - Advisor

Feasibility - Data

- جامعة قطر Qatar university
- Is the required data readily available, or will you need to collect it?
- Does the data collection involve?
 - Collaborators physically far away and working in a different area
 - A recent experimental setup
 - Medical or biological samples

Feasibility - Personnel

جامعة قطر Qatar university

- Your advisor should:
 - Have expertise and track record in the area
 - Be interested in the topic
 - Be responsive to answer your questions, provide feedback
- Other PG students in your advisor's team
 - Are more hands-on with related techniques
 - Are more readily available to help
- Collaborators should:
 - Provide complimentary expertise (and the required data)
 - Be at least somewhat interested in your problem

Personnel - Collaborators

A Guide to Academic Relationships

JORGE CHAM @ 2013

Same department, different field = "Colleague"

Same topic, different field = "Collaborator"

Same field, different topic = Conference Buddy

Different field, different topic = Who cares?

Same field, same topic = Bitter Enemy (a.k.a. also "Collaborator")

WWW.PHDCOMICS.COM

Your Advisor Knows Everything?

This is not quite right, but it's true that some PhD students know more than their advisor about the specific problem they are working on.

Interest

جامعة قطر Qatar university

- Of personal interest
 - Of wider interest to others working in the area
 - Expected to contribute new, verifiable knowledge

- Subjective, by its very nature!
 - Good mentoring can be useful here

Can impact on self-motivation

Self-Motivation

NEWTON'S Three Laws of Graduation

SECOND LAW

"The age, **a**, of a doctoral process is directly proportional to the flexibility, **f**, given by the advisor and inversely proportional to the student's motivation, **m**"

Mathematically, this postulate translates to:

$$age_{PhD} = \frac{\text{flexibility}}{\text{motivation}}$$

$$a = F / m$$

$$\therefore F = m a$$

JORGE CHAM OTHE STANFORD DAILY

Feasibility vs Interest

→ Feasibility

The Perils

 Working on a good research problem may involve venturing into unchartered territories

- Risk of not being able to:
 - Achieve your designed objectives in time
 - Get something a collaborator promised
- Spend too much time with your family & friends

Researching in The Cloud

http://www.youtube.com/watch?v=RVoz pEeV8I&t=3m27s

The Cloud Model

The objective schema can lead to frustration when the project goes off track	The nurturing schema gives support and opens new directions
В	В
A	S C C C C C C C C C C C C C C C C C C C

The Joys - Potential Rewards

Graduate with your thesis – have MS or PhD after 1
 your name ©

- Make new discoveries, develop new approaches
- Scale new heights

- Build in confidence
- Sense of fulfillment & pride

Key Ingredients

- Based on these theories and my experience,
 here are some of the key ingredients of a good
 research problem:
- ¬ 1 − Involves a team
 - Safe topic
 - Narrow and deep
- 11 Sufficiently feasible
 - Sufficient personal interest
 - Sufficient wider interest

Take Your Time

جامعة قطر QATAR UNIVERSITY

1

1.01

Conclusions

- Research problem is a problem (question) in your field that needs to be addressed (answered)
 - Choosing a good research problem is probably
 the most important decision in your PG study

- Assess a research problem against some of the key ingredients
 - Take your time to decide

Acknowledgements

- Dr Tamer Elsayed for initiating this thread
- Several colleagues (students and collaborators) with whom I have had discussions on this topic

- Uri Alon, "How to Choose a Good Scientific Problem," 2009
 - Peter Eades, "How to Get a PhD in IT," 2010

111110101		111110101
100000110		1000001.10
001001010		001001010
101		1.01
01010110	Thank you	010101.10
11011010		11011010
110011001		110011001
000100010		000100010
010101010		010101010