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A B S T R A C T

Liquefied natural gas (LNG) technology, particularly the propane precooled mixed refrigerant (C3MR) process,
has demonstrated efficiency and emerged as a distinctive dual-refrigerant technology widely used in LNG pro-
duction. However, the liquefaction process is the highest energy-intensive stage within its supply chain as it
consumes about 8 % of the LNG energy content. Thus, for the first time, this study proposes systematic
knowledge-based and constrained Bayesian optimization approaches to identify the optimal operation of the
C3MR process. These approaches optimize both the operational parameters (pressures and flow rates) and the
composition of the mixed refrigerant with practical equipment specifications and rigorous constraints. The re-
sults show that the specific energy consumption (SEC) is reduced to 0.264 kWh/kgLNG, which is 14.6 %, and 26 %
lower than the basic C3MR process (unoptimized case) and typical industrial C3MR processes, respectively. In
addition, the optimized SEC in this study is 14.5 % to 38.6 % lower than those reported in the literature. At large-
scale LNG production (10,000 tons per day), the reduction in the SEC is translated into an 18 MW decrease in
compression power, saving approximately 4.7 million $ per year for each C3MR train. Moreover, the coefficient
of performance (COP) of the C3MR process was improved by about 15 %, and the CO2 emissions were reduced by
17 % (7 tons per year) compared to the basic C3MR process, indicating potential advancements in large-scale
LNG liquefaction processes.

1. Introduction

As the world’s population increases and economies continue to
develop, there’s a rapid growth in energy demand. To address this
growing demand and in response to economic and environmental con-
cerns, the demand for natural gas (NG) is expected to increase by 1.6 %
per year in the upcoming decades (Xu et al., 2022). This rise is predicted
to contribute to a quarter of the global energy demand by 2030 (Kumar
et al., 2011; IGU World LNG Report, 2015; BP, 2023). According to the
BP Energy Outlook 2017 edition, dependence on oil and coal is projected
to drop to below 30 % of total primary energy by 2035. Meanwhile, the
demand for natural gas is expected to rise significantly, potentially
overtaking coal and securing its position as the second-largest primary
energy source, following oil. Fig. 1 illustrates the projected growth in
shares of primary energy sources by the year 2035 (BP, 2017).

Liquefied natural gas technology (LNG) is implemented as a cost-
effective alternative for pipelines for overseas transportation of

natural gas (Raeisdanaei et al., 2022). This process involves cooling
natural gas to approximately − 162 ◦C at atmospheric pressure, making
LNG about 1/600th the volume of natural gas at the burner tip. The next
subsections provide a thorough overview of the development of LNG
processes and optimization studies that were conducted on the C3MR
process with a detailed explanation of the research gaps that are
addressed in this study.

1.1. Development of LNG processes

Over the decades, LNG liquefaction technology has undergone
remarkable transformations, evolving through five distinct stages. With
an increased emphasis on heat integration and cogeneration, these ad-
vancements underscore the industry’s commitment to efficiency and
environmental concerns (Bosma and Nagelvoort, 2009);Fig. 2 summa-
rizes the LNG liquefaction development over 5 stages. The LNG lique-
faction processes can be categorized based on the used refrigerants and
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cycle configuration into three main groups including cascade, mixed
refrigerant (MR), and expander-based (EXP) processes (Mokhatab et al.,
2013). Table 1 provides a comprehensive comparison between the
future and limitations of these processes. MR processes stand out as
more attractive, providing an optimal solution for both onshore and
offshore applications on small-large scales (Al-Mutaz et al., 2016).
Notably, the C3MR process developed by Air Products, accounting
approximately 81 % of the world’s baseload LNG production capacity
(Khan et al., 2017). In addition, it exhibits a lower specific energy
consumption, averaging 10 % less than the cascaded process and 55 %
less than the N2 expander-based processes (Furda et al., 2022). How-
ever, the energy consumption of these processes is still very high (about
8–10 % of the LNG energy content is consumed during the liquefaction
process). Therefore, various studies are actively seeking ways to opti-
mize its energy performance (see Section 1.2) to increase the economic
benefits of these processes and concurrently mitigate their negative
environmental impacts.

1.2. Literature review of optimization studies of LNG processes

As summarized in Table 2, numerous researchers have concentrated
their optimization efforts on minimizing the specific energy consump-
tion (SEC) value of the C3MR. Other papers have addressed multiple
objective functions, with Wang et al. (Wang et al., 2013) as an example.
Their objective function incorporates SEC, exergy efficiency (EXE), and
Operating expenditures (OPEX). To facilitate the optimization process,
the research has employed distinct approaches, broadly categorized as
software-based and knowledge-based methods. Numerous studies have
utilized a genetic algorithm (GA) approach, as seen in (Alabdulkarem
et al., 2011; He and Lin, 2020; Ghorbani et al., 2016), coupled with the
Aspen HYSYS software. This combination enables the optimization of
the cycle with direct feedback fromHYSYS. GA is anticipated to discover
the global minimum solution, even in scenarios where the objective
function exhibits multiple extrema (Yang et al., 2005). Furthermore,
Sabbagh et al. (Sabbagh et al., 2021), Furda et al. (Furda et al., 2022)

Fig. 1. NG demand increase compared to other primary energy sources
(BP, 2017).

Fig. 2. A historical review of the design development of liquefaction technologies for base load LNG plants.

Table 1
LNG liquefaction processes comparison.

Process Advantages Limitations SEC (kWh/
kgLNG)

Cascade (Lim
et al., Mar.
2013)

• High capacity
• Efficient
operation

• High capital costs
• Complex
configuration

0.33–0.39 (
Furda et al.,
2022)

SMR (Khan
et al., 2017)

• Simple design
• Reduced capital
cost

• Small footprint

• Lower efficiency
• Limited scalability
• Flammable
refrigerants

0.30–0.40 (
Zhang et al.,
2020)

C3MR (Khan
et al., 2017); (
Park et al.,
2022)

• Dominance in
LNG production
(81 %)

• High efficiency

• Less attractive for
offshore
applications

• Large propane
inventory

0.29–0.30 (
Zhang et al.,
2020)

DMR (Khan
et al., 2017); (
Lim et al.,
2013)

• Removing
limitations on the
C3 compressors

• Increased
capacity

• Complex
configuration

0.28–0.30 (
Zhang et al.,
2020)

Single N2

Expander (
Khan et al.,
2017)

• Simplicity
• High isentropic
efficiency

• High compression
energy
requirements

0.40–0.97 (
Zhang et al.,
2020)

Double N2

Expander (
Lim et al.,
2013)

• Flexibility with
refrigerants

• Increased HXs’
size

• Safety
considerations

0.39–0.56 (
Furda et al.,
2022)
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and Santos et al. (Santos et al., 2023) adopted NSGA-II (Non-dominated
sorting genetic algorithm II), which is employed to find optimal solu-
tions for dual and triple objective optimizations. Additionally, another
algorithm implemented in various studies is the sequential quadratic
programming (SQP) optimization algorithm (Wang et al., 2011; Lee
et al., 2015; Katebah et al., 2020). The popularity of SQP methods has
grown due to their generality, robustness, and efficiency. In 2022, Sun
et al. (Sun et al., 2022) attempted to compare the performance and ac-
curacy of various optimization algorithms, namely GA, PSO, and BOX.
Their study revealed that the PSO-optimized LNG process exhibited the
best performance. For the knowledge-based optimization (KBO)
approach, only one study (Khan et al., 2013) implemented this approach
where the researcher’s expertise in thermodynamics was leveraged to
derive a robust solution based on observed results during the optimi-
zation process.

1.3. Technical and methodological gaps in C3MR optimization studies

As identified in the literature review, several technical and meth-
odological gaps exist in the above optimization studies, which can be
summarized as follows:

(i) Impractical constraints and assumptions considered in optimi-
zation problems. For example, the unbounded minimum internal
temperature approach in heat exchangers such as in (Wang et al.,
2013) results in an impractical heat exchanger area for real plant
implementation. Additionally, some researchers consider wet
conditions in compressor inlet streams, introducing potential

issues like compressor surge, efficiency loss, component erosion,
corrosion, increased motor load, and reduced lubrication effec-
tiveness. Furthermore, certain assumptions in the literature, such
as assuming high isentropic efficiency for compressors (e.g., 83 %
in (Hajji et al., 2019), may not align with real-world conditions.
Therefore, the low SEC values in these studies are due to the high
compressor efficiencies and not for the optimization analyses.
Moreover, some assumptions made in the literature, like
assuming a high isentropic efficiency for compressors (for
example, 83 % in reference (Hajji et al., 2019), may not reflect
real-world conditions. Consequently, the low SEC values reported
in these studies result from the assumed high efficiencies of the
compressors rather than from optimization analyses. Therefore, a
comparison of the optimized results with these studies must be
conducted at the same efficiencies to assess the validity and
effectiveness of the optimization methods.

(ii) Most papers considered only one optimization approach or
incorporated two approaches to complement each other. How-
ever, only a few highlighted the accuracy of their results by
comparing different optimization approaches simultaneously.
For instance, Sun et al. (Sun et al., 2022) recommended using the
PSO algorithm after demonstrating its superiority over GA and
BOX approaches.

1.4. Contributions and manuscript organization

To the author’s knowledge, integrating the KBO with the CBO to
optimize the performance of the cryogenic process is proposed for the

Table 2
Summary of the optimization studies developed on the C3MR.

Refs. Year Process Approach Objective
function(s)

SEC, kWh/kg Energy saving, (%) Software

(Alabdulkarem et al., 2011) 2011 C3MR GA SEC 0.283 9.08 MATLAB+HYSYS
(Wang et al., 2011) 2011 C3MR SQP SEC NA 13.70 Aspen Plus
(Husnil et al., 2012) 2012 C3MR Plantwide SEC NA NA Aspen Hysys
(Lee, et al., 2012) 2012 C3MR Case studies SEC NA 27.70 NA
(Sun et al., 2012) 2012 C3MR HYSYS opt. SEC NA 9.02 HYSYS
(Wang et al., 2012) 2012 C3MR MINLP SEC NA 13.00 GAMS
(Wang et al., 2013) 2013 C3MR, C3MR-SP Sequential

search
SEC, EXE, OPEX 0.408 NA Aspen HYSYS

(Khan et al., 2013) 2013 C3MR KBO SEC, EXE, 0.278 13.68 Aspen HYSYS
(Wang et al., 2014) 2014 DMR, C3MR NA SEC, TCI, TAC,

TCC
0.644 26.70, 14.50 Aspen HYSYS

(Khan et al., 2015) 2015 SMR, C3MR SCRS SEC 0.475, 0.284 15.00, 14.00 Aspen HYSYS+MS
(Lee et al., 2015) 2015 C3MR SQP SEC 0.273 16.40 gPROMS
(Ghorbani et al., 2016) 2016 C3MR GA Unit Cost, EXE, 0.259 NA HYSYS+MATLAB
(Sanavandi and
Ziabasharhagh, 2016)

2016 C3MR HYSYS opt. SEC 0.271 5.24 Aspen HYSYS

(Sun et al., 2016) 2016 AP-X GA SEC 0.271 15.560 MATLAB+HYSYS
(Hajji et al., 2019) 2019 C3MR DSM SEC 0.235 11.700 Aspen HYSYS
(Primabudi et al., 2019) 2019 C3MR GA EXE, TC 0.837 15.11 Aspen Plus
(Rao et al., 2019) 2019 C3MR DDNP+GA SEC NA NA HYSYS
(Song et al., 2019) 2019 C3MR EDR, SQP ED 0.252 17.70 MATLAB+HYSYS
(He and Lin, 2020) 2020 C3MR GA SEC NA 16.23 HYSYS
(He and Lin, 2020) 2020 C3MR GA SEC 0.440 NA HYSYS
(Katebah et al., 2020) 2020 C3MR SQP SEC 0.277 6.00 Aspen Plus
(Qyyum, 2020) 2020 C3MR, SMR VSA SEC 0.260, 0.370 27.80, 16.10 MATLAB+HYSYS
(Veldandi and Kurian, 2020) 2020 C3MR SEC 0.217 13.85 AVEVA SimCentral
(Sabbagh et al., 2021) 2021 C3MR GA, NSGA-II AP, SEC, EXE 0.347 NA NA
(Cao et al., 2021) 2021 mini-LNG KBO Capacity, cost NA NA Aspen HYSYS
(Jin et al., 2022) 2022 N2MR GA SEC 0.368 3.20 MATLAB+HYSYS
(Furda et al., 2022) 2022 C3MR GA, NSGA-II LPC, CO2 0.310 MATLAB+HYSYS
(Sun et al., 2022) 2022 SMR, DMR,

C3MR, CMR
GA, PSO, BOX SEC, EXE 0.323, 0.235, 0.249,

0.243
13.30, 15.98, 36.59,
19.53

MATLAB+HYSYS

(Pereira et al., 2022) 2022 SMR,
C3MR,
DMR,
CMR,AP-X

PSO SEC 0.256,
0.255,
0.246,
0.253,0.237

NA MATLAB+HYSYS

(Santos et al., 2023) 2023 SMR, C3MR NSGA-II SEC, UA 0.217 NA MATLAB+HYSYS+
GMAS

R. Shady et al.
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first time in this study. This innovative integration harnesses the
robustness of KBO in conjunction with the constraint-handling capa-
bilities of CBO, offering a novel approach to enhancing process effi-
ciency. In particular, for the most common LNG production process
(C3MR), this optimization study aims to determine its optimal operation
(minimum compression power) under real and rigorous optimization
constraints, which are mostly overlooked in previous studies. This study
incorporates three distinct novel aspects as follows:

• Performing a systematic knowledge-based optimization (KBO)
approach to a large-scale C3MR liquefaction process, which has not
been employed in previous studies.

• Proposing the constrained Bayesian optimization (CBO) technique to
optimize the performance of large-scale C3MR process.

• Conducting a comparative analysis to assess and contrast the out-
comes achieved through the CBO approach with those attained using
the KBO method.

Moreover, this study emphasizes the importance of realistic oper-
ating conditions to ensure the optimization process yields practical and
credible results. These conditions will encompass the establishment of
reasonable values for compressor efficiencies, rigorous constraints for
the refrigerant quality at the compressors’ inlet, and a bounded internal
temperature approach of the process heat exchangers. A detailed
description of the C3MR process is provided in Section 2. The process
simulation and optimization formulation are explained in Section 3. The
results of the optimization process using KBO and CBO are discussed and
compared in Section 4. Finally, the key findings of this study are sum-
marized in Section 5.

2. C3MR process description

This section describes the C3MR process (shown in Fig. 3) and its

operation. The natural gas is fed to the process (stream 43) at 25 ◦C and
65 bar. Next, the NG is precooled through four heat exchangers (HX-1 to
HX-4) as part of the C3 cycle. Afterward, the NG is further cooled in HX-
5 and HX-6, then throttled through (V7) to the liquefaction temperature
of − 162 ◦C. Finally, the NG passes through a separator (FT-5) to separate
the liquefied natural gas (LNG, stream 5) from the remaining flash gas
(stream 6).

In the MR cycle, the refrigerant enters HX-1 at stream 7 (at 31.85 ◦C,
and 48.60 bar) and exits from HX-4 at stream 11. The MR then proceeds
to a separator (FT-4), where it’s split into two streams, streams 12 and
18 that are responsible for the cooling duty of HX-5 and HX-6. Then, the
MR is compressed from the low-pressure side to the high-pressure side
through an intercooled compression process in compressors C-5 and C-6.
In the C3 cycle, Propane (C3) enters the throttling valve (V4) at (40 ◦C,
14 bar) and expands to lower pressure to perform the cooling duty of
HX-1. The exit stream (24) is split into liquid (25) and vapor (40)
streams. The liquid stream is further expanded to lower pressure to
perform the cooling duty of HX-2 while the vapor stream is directed to
be compressed in C-4. The same process is repeated for the exit streams
from HX-2 and HX-3. Finally, the exit stream from HX-4 is redirected to
C-1 to be compressed to the higher pressure, mixed with vapor streams,
and compressed again until reaching the high pressure of the cycle at the
outlet of C-4.

3. Modeling and simulation methods

This section presents the definitions of the performance indicators
that are used to evaluate the performance of the C3MR process (Section
3.1). Then, the details of optimization formulation (including objective
functions, decision variables, constraints, and optimization techniques)
are presented in Section 3.2. After that, the details of the process
modeling and validation are presented in Section 3.3.

Fig. 3. Layout of the C3MR LNG process.

R. Shady et al.
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3.1. Performance indicators

Energetic analysis provides critical information that can be used to
optimize the performance of a process, reduce costs, and minimize its
environmental impact. Therefore, in this study, the energetic perfor-
mance of the C3MR liquefaction process will be measured using two
performance indicators, which are: the SEC and the coefficient of per-
formance (COP). These performance indicators play a pivotal role in
evaluating the efficiency and effectiveness of this cryogenic process. SEC
quantifies the energy required to produce a unit of liquefied natural gas,
providing insight into the process’s energy efficiency. Eq. (1) displays
the formula for SEC (Sabbagh et al., 2021).

SEC
(
kWh
kg

LNG
)

=

∑
Wi(kw)

ṁNG

(
kg
hr

) (1)

Where
∑

Wi represents the power consumption of individual compo-
nents or processes within the LNG production system, and ṁNG is the
mass flow of the NG which is equal to 120 kg/s in this study. COP
measures the effectiveness of energy utilization, representing the ratio of
useful cooling or liquefaction achieved to the energy input. Eq. (2)
displays the formula for COP (Sleiti and Al-Ammari, 2023).

COP =

∑i=6
i=1QHX,i

∑j=6
j=1ẆC− j

(2)

where
∑i=6

i=1QHX,i represents the total cooling load of the C3MR heat
multi-stream heat exchangers and can be expressed as follows (Sleiti and
Al-Ammaria, 2024):

∑i=6

i=1
QHX,i = QHX,1 +QHX,2 +QHX,3 +QHX,4 +QHX,5 +QHX,6 (3)

and
∑j=6

j=1ẆC− j represents the total compression power of the C3MR
compressors and can be expressed as follows:

∑j=6

j=1
ẆHX,j = ẆC− 1 + ẆC− 2 + ẆC− 3 + ẆC− 4 + ẆC− 5 + ẆC− 6 (4)

3.2. Optimization formulation

The details of the optimization formulation of this study are pre-
sented in this section.

3.2.1. Objective functions
The primary goal of this research is to enhance the efficiency of the

C3MR liquefaction process by reducing SEC. A lower SEC value signifies
improved energy efficiency, making it the focus of the objective func-
tion, defined as follows (Sleiti et al., 2023):

Objectivefunction : Minimize(SEC) =
∑

Wi

ṁNG
(5)

3.2.2. Decision variables
To optimize the predefined objective functions, some decision vari-

ables will be selected, which are the parameters or variables subject to
adjustment or control to attain particular objectives and enhance spe-
cific outcomes. These selected decision variables involve the low and
high-pressure streams in both the C3 cycle and MR cycle, along with the
mass flow rates of C3 and MR (as shown in Table 3), as well as the mass
fraction of MR components. The initial and optimized values (which are
determined based on the optimal results of this study) of each variable
are reported in Table 3 to facilitate the comparison process between
them. The optimal composition of the mixed refrigerant is provided later
in Table 9.

3.2.3. Optimization assumptions & constraints
The details of the optimization constraints are presented in Table 4.

Concerning constraints, two were taken into account for the six cen-
trifugal compressors in the C3MR. One constraint requires the MR
entering the compressor to be in a vapor phase, while the other dictates
that the pressure ratio of the compressor must fall within the range of 1.3
to 7. In the case of the six multi-stream heat exchangers within the cycle,
it is essential to maintain a minimum internal temperature approach
(MITA) ranging from 0.5 to 4. This ensures both high efficiency and
performance of the heat exchangers while striving to minimize costs,
striking a balance between efficiency and cost. Furthermore, to ensure
the feasibility of mixing streams in the mixers of the C3 cycle (Mix-1 to
Mix-3, Fig. 3) and MR cycle (Mix-4, Fig. 3), the pressure of the inlet
streams for each mixer must be equal as shown in the last row of Table 4.

As for the assumptions, this study operates under steady-state con-
ditions. Additionally, it is assumed that the compressors’ adiabatic ef-
ficiency is 75 %, which are realistic values attainable in real-world
compressor operations. Furthermore, phase separators, heat ex-
changers, air coolers, and mixers are assumed to operate without any
pressure drops. The fed NG is made up of different gases, including ni-
trogen (N2), methane (CH4), ethane (C2H6), propylene (C3H6), and n-
butane with the following mass fractions (N2: 0.0615, CH4:0.7684,
C2H6: 0.0906, C3H6: 0.0512, n-Butane: 0.0283).

3.2.4. Optimization techniques
Two innovative optimization techniques are adopted in this study.

These techniques encompass knowledge-based optimization (KBO) and
constrained Bayesian optimization (CBO), a comprehensive explanation
of both approaches is given in the following subsections.

The optimization of SEC for the C3MR liquefaction cycle is carried
out systematically using the KBO approach. The optimization process is
performed sequentially, beginning with the C3 cycle, followed by the
MR cycle, and concluding with the MR composition. Within the C3
cycle, the following steps were followed as summarized in Fig. 4.

1) First, we Increase the low-pressure (LP) of the evaporator streams in
the C3 cycle, aiming to reduce the pressure difference between the
inlet and outlet of the compressors, which may decrease the load on
the compressors.

Table 3
Decision pressure and mass flow variables of the C3MR process.

Variable Range Initial value Optimized value

C3 cycle
P23, (bar) 6.5–8.5 7.2 7.7
P26, (bar) 4.0–7.0 5.1 5.6
P29, (bar) 1.5–3.5 2.5 2.75
P32, (bar) 1.0–2.0 1.3 1.31
P21, (bar) 12.0–16.0 14.3 13.98
C3 mass flow, (kg/h) 350–550 446 441.5
MR cycle
P15, (bar) 1.0–4.0 3.0 3.45
P2, (bar) 15.0–25.0 21.0 21.0
P4, (bar) 35.0–55.0 48.6 48.6
MR mass flow, (kg/h) 180––360 300 294

Table 4
Optimization constraints & assumptions.

Constraints Justification

fCkvap,i = 1 To prevent compressors’ operational issues.

0.5 ≤ MITA ≤ 4 To ensure valid, feasible, and efficient HX design.
1.3 ≥ Pr ≤ 7 To be within the practical range of commercial

compressors.
P34 = P42, P36 = P41, P38 =
P40, P15 = P20

To ensure that the mixed streams (in Mix-1 to Mix-
4) are mixed at the same pressure

R. Shady et al.
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2) At each set for the LP, we decrease the high-pressure (HP) in the C3
cycle to reduce the work needed by the compressors.

3) At each optimal set for the LP and HP values, we reduce the C3 flow
rate, to reduce the load on the compressors, which are contributing
the most to the power consumption by the whole loop.

These adjustments aim to minimize the SEC value while maintaining
the C3 cycle’s integrity, avoiding issues like temperature cross in the
heat exchangers or liquid in inlet streams of the compressors, etc.
Similarly, in the MR cycle, the same approach is applied starting with
the increase in the LP and then the decrease in the HP, followed by the
reduction in the MR flow. The minimum SEC value obtained after
optimizing the C3 and MR cycle pressure streams will serve as the
reference case for the fourth step: optimizing the mixed refrigerant
composition (using CBO). The optimization of the MR composition is
performed by tuning the heavyweight and lightweight refrigerant frac-
tions in the basic mixture. Additionally, new components, not present in
the basic mixture, are also introduced to the MR composition.

The MR comprises two categories, as detailed in (Sleiti and Al-
Ammari, 2022): lightweight components (including N2, CH4, C2H6,
and R14) and heavyweight components (C3H8, n-C4H10, i-C4H10, i-
C5H12, and n-C5H12). Lightweight components have boiling points
below − 100 ◦C and freezing points under − 168 ◦C, making them
responsible for achieving very low cryogenic temperatures in the
liquefaction process (e.x. in HX6). In contrast, heavyweight components
have boiling points higher than − 88 ◦C and freezing points (except
C3H8) higher than − 160 ◦C, which make them responsible for providing
the primary refrigeration effect (cooling capacity) through the pre-
cooling process (e.x. in HX5). The heavyweight/ lightweight compo-
nents of the MR that are considered in this study are summarized in
Table 5 as reported in (Sleiti and Al-Ammari, 2022). The data of the
boiling and triple point temperatures are obtained from the library of
engineering equation solver (EES) library. The boiling point of each
component is obtained as the saturation temperature at a pressure of 1.0
bar.

The systematic optimization of mass fractions for MR components
has been carried out following the following procedures (Sleiti and Al-
Ammari, 2022):

1) Determine the number of pure components that need to be mixed to
develop the MR composition. For LNG production, using four or five
refrigerants is usually enough to get the best composition with a
target temperature of − 162 ◦C.

2) Decide on the initial flow rate for the total MR stream.
3) Select the initial fractions for the heavy and light refrigerants,

considering their properties listed in Table 5 (it is recommended to
start with 40 % for light components and 60 % for heavy
components).

4) Start initializing the fraction of each component with the intention to
increase the heavyweight components since they are easier to be
compressed in the cycle, and to decrease the lightweight components
in the mixture since they will require more work.

5) Simulate the C3MR process with the new compositions to check if the
developed MR is valid or not. Valid MR means that there is no
thermophysical problem (no temperature-cross and/or no overlaps
on the composite curves, and no liquid in compressors’ inlet
streams).

6) Tune the MR flow to get the minimum possible value for SEC while
maintaining the cycle without any problems.

Bayesian optimization is a sophisticated technique designed for
optimizing functions with costly evaluations, especially in scenarios
where the objective function lacks a known mathematical expression. At
its core, Bayesian optimization employs a probabilistic model, often a
Gaussian process (GP), to approximate the unknown function. The
Gaussian process model is used because it provides a flexible and robust
way to model complex functions. The GP is defined by a mean function
μ(x) and a covariance function k(x, x́ ). Given a set of observations, the
GP can predict the function value at a new point by calculating the mean
and variance of the predicted function values, incorporating both the
prior mean and the observed data as follows (Rasmussen et al., 2006):

μ(x) = K(x,X)
(
K(X,X) + σ2I

)− 1y (6)

σ2(x) = k(x, xʹ) − K(x,X)
(
K(X,X) + σ2I

)− 1K(X, x) (7)

where X is the set of input points, y is the set of observed function values,
K is the covariance matrix of the training points, and σ2 represents the
noise in the observations. This model captures the belief about the
function’s behavior based on available data by updating the mean and
variance at each step with new observations. The function k(x, xʹ) is
known as the covariance or kernel function, and it describes the spatial
or temporal covariance of a random variable process. There are various
types of kernel functions, such as the squared exponential, exponential,
linear, and spherical kernels. Although the squared exponential kernel is
commonly used, it is often too smooth for practical optimization prob-
lems. Previous studies have shown that the Matérn 5/2 kernel provides a
more optimized solution. Therefore, this study adopts the Matérn 5/2
kernel, which is expressed as follows (Noh et al., 2022):

k(x, xʹ) =

(

1+

̅̅̅
5

√
d(x, xʹ)
l

+
5d(x, xʹ)2

3l

)

exp
(

−

̅̅̅
5

√
d(x, xʹ)
l

)

(8)

where d(x, x́ ) denotes the Euclidean distance and l denotes the length
scale hyper-parameter. The balance between exploration (searching in
regions with high uncertainty) and exploitation (searching in regions
likely to contain the optimum) is achieved through the use of an
acquisition function. The acquisition function guides the selection of the
next point to evaluate by considering both the predicted mean and un-
certainty (variance) from the GP model. Common acquisition functions
include Expected Improvement (EI), Probability of Improvement (PI),
and Upper Confidence Bound (UCB). For instance, the Expected
Improvement (EI) function is defined as (Noh et al., 2022):

EI(x) = E[max(f(x) − f(x+),0 ) ] (9)

Fig. 4. KBO methodology.

Table 5
Thermophysical properties of the pure components of candidate refrigerants
(Sleiti and Al-Ammari, 2022).

Component Boiling point temp. [◦C] Triple point temp. [◦C]

Lightweight components
Nitrogen (N2) − 195.80 − 210.00
Methane (CH4) − 161.50 − 182.50
Ethane (C2H6) − 88.59 − 182.80
Refrig-14 (R14) − 127.90 − 183.60

Heavyweight components
Propane (C3H8) − 42.10 − 187.70
n-Butane (n-C4H10) − 0.53 − 138.30
i-Butane (i-C4H10) − 11.68 − 159.60
i-Pentane (i-C5H12) 27.85 − 160.50
n-Pentane (n-C5H12) 35.87 − 129.70
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where f(x+) is the best function value observed so far. The point that
maximizes the EI function is selected for the next evaluation. Another
form of the EI function is given by:

EI(x) = σ(x)(γ(x)Φ(γ(x) )+ϕ(γ(x) ) ) (10)

where σ(x)) denotes the standard deviation of the posterior predictive at
x , and Φ and ϕ denote the cumulative distribution function (CDF) and
the probability density function (PDF) of the standard normal distribu-
tion, respectively. The CDF is related to exploitation, while the PDF is
related to exploration. The term γ(x) is defined as:

γ(x) =
μ(x) − f(x+) − ξ

σ(x) (11)

where ξ is a parameter that determines the trade-off between explora-
tion and exploitation. A larger ξ value favors exploration, while a
smaller ξ value favors exploitation. In this study, ξ was set to 0.02. The
Bayesian optimization process unfolds iteratively, following these steps:

(i) Initialization: The process begins with an initial set of evaluations,
which are used to fit the initial Gaussian process model.

(ii) Acquisition function optimization: The algorithm optimizes the
acquisition function to determine the next point for evaluation.
This step involves balancing exploration and exploitation as
explained above.

(iii) Evaluation and update: The selected point is evaluated on the true
objective function, and the model is updated with this new
information.

(iv) Iteration: Steps (ii) and (iii) are repeated until a stopping criterion
(such as a maximum number of iterations) is met.

Through this iterative process, Bayesian optimization efficiently
explores the search space, gradually refining its understanding of the
objective function and converging to the optimal solution while mini-
mizing the number of costly evaluations.

In the CBO, the optimization process begins by optimizing the MR
compositions (Step 4 in the KBO) and mass flow to reach the lowest
possible SEC value. The CBO approach builds on the insights gained
from the researcher’s experience with the KBO approach, aiming to
automate and enhance the process. Fig. 5 illustrates the flowchart of the
CBO algorithm, beginning with the initialization of the optimization
process. The algorithm establishes a connection with ASPEN HYSYS V12
and proceeds to read the user decision variables targeted for optimiza-
tion, along with the constraints defining their allowable ranges. The
Bayesian optimization technique acts as the optimization agent in this
scenario.

The program then enters a loop to monitor the user-specified itera-
tion limit. If the limit is not reached, the algorithm proceeds to the query
acquisition function. Upon acquiring a new set of parameters, involving
a modified composition of the MR, the HYSYS parameters are adjusted.
Changes in the objective function and other parameters are calculated
based on the new composition and mass flow. The algorithm assesses
user-defined constraints, prints the updated SEC value, and iterates the
process until reaching the specified iteration limit. Upon reaching the
limit, the loop terminates, and the algorithm saves the generated results,
indicating the end of the optimization process. Fig. 6 provides a short
version of the CBO algorithm, offering a simplified and easily under-
standable representation of the logic described in the flowchart.

3.3. Process simulation and validation

In this study, Aspen HYSYS software is employed to model and
simulate the C3MR) cycle. The Peng-Robinson equation of state is
judiciously selected for its suitability for the thermodynamic properties
of the refrigerants at cryogenic temperatures (Bozorgkhou et al., 2022);

(Shayan et al., 2020). The key parameters of the C3MR process are
detailed in Table 6.

Before introducing the optimization procedure for the C3MR process,
the simulation of the C3MR process is validated. This validation
involved a meticulous comparison of the model’s performance against
the findings of Ghorbani et al. in (Ghorbani et al., 2016), specifically
focusing on identical compositions for natural gas (NG) and mixed
refrigerant (MR) as outlined in Table 7. Additionally, the process also

Fig. 5. CBO flowchart.

Fig. 6. Short version of CBO algorithm.
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entailed maintaining the same plant capacity, pressure, and temperature
values for material streams, as well as ensuring the complete congruence
of compressors and heat exchangers.

The selection of Ghorbani et al.’s study for comparison was moti-
vated by their comprehensive disclosure of all parameters relevant to the
C3MR process, which is essential for the replication of their methodol-
ogy. The outcomes of this validation, inclusive of key parameters such as

feed natural gas flow, LNG flow, SEC, compressor power, and heat
exchanger cooling duty, have been concisely compiled in Table 8.
Notably, the discrepancies between these parameters and the reference
data were exceedingly minimal, with the highest recorded error per-
centage of 0.9 %. The relative error in the specific power (0.8782 %) is
higher than that of the other parameters. This may be explained by that
the SEC definitions combined the power of C-1 to C-6, which aggregate
and magnify errors of the individual power calculations.

4. Results and discussion

This section aims to present the results obtained throughout the
study for optimizing the C3MR liquefaction process. It will begin by
discussing the results of the KBO approach. Subsequently, the main
findings of the CBO approach will be presented through different case
scenarios. A comparative analysis between KBO and CBO, based on the
results obtained, will follow, accompanied by some recommendations.
Lastly, a comparison between the optimal case and the base case from

Table 6
Key operating parameters of the C3MR process (base case).

Stream Temp. Pressure Mass flow Composition (Mole fractions)

K bar kg/h N2 CH4 C2H6 C3H8 C4H10

1 230.6 3.0 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
2 364.5 21.0 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
3 303.2 21.0 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
4 368.6 48.6 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
5 107.1 1.0 45.34 0.0154 0.8932 0.0591 0.0228 0.0096
6 107.1 1.0 3.836 0.3712 0.6287 0.0000 0.0000 0.0000
7 305.0 48.6 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
8 290.6 48.6 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
9 278.8 48.6 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
10 256.8 48.6 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
11 240.0 48.6 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
12 240.0 48.6 21.82 0.1704 0.6554 0.1410 0.0331 0.0000
13 144.7 48.4 21.82 0.1704 0.6554 0.1410 0.0331 0.0000
14 113.0 48.4 21.82 0.1704 0.6554 0.1410 0.0331 0.0000
15 106.5 3.0 21.82 0.1704 0.6554 0.1410 0.0331 0.0000
16 140.7 3.0 21.82 0.1704 0.6554 0.1410 0.0331 0.0000
17 140.2 3.0 97.38 0.0700 0.4181 0.2989 0.2130 0.0000
18 240.0 48.6 75.56 0.0292 0.3217 0.3630 0.2861 0.0000
19 144.8 48.4 75.56 0.0292 0.3217 0.3630 0.2861 0.0000
20 139.1 3.0 75.56 0.0292 0.3217 0.3630 0.2861 0.0000
21 330.3 14.3 163.035 0.0000 0.0000 0.0000 1.0000 0.0000
22 313.1 14.3 163.035 0.0000 0.0000 0.0000 1.0000 0.0000
23 287.6 7.2 163.035 0.0000 0.0000 0.0000 1.0000 0.0000
24 287.6 7.2 163.035 0.0000 0.0000 0.0000 1.0000 0.0000
25 287.6 7.2 107.853 0.0000 0.0000 0.0000 1.0000 0.0000
26 275.6 5.1 107.853 0.0000 0.0000 0.0000 1.0000 0.0000
27 275.6 5.1 107.853 0.0000 0.0000 0.0000 1.0000 0.0000
28 275.6 5.1 74.435 0.0000 0.0000 0.0000 1.0000 0.0000
29 253.8 2.5 74.435 0.0000 0.0000 0.0000 1.0000 0.0000
30 253.8 2.5 74.435 0.0000 0.0000 0.0000 1.0000 0.0000
31 253.8 2.5 27.766 0.0000 0.0000 0.0000 1.0000 0.0000
32 236.8 1.3 27.766 0.0000 0.0000 0.0000 1.0000 0.0000
33 242.0 1.3 27.766 0.0000 0.0000 0.0000 1.0000 0.0000
34 268.6 2.5 27.766 0.0000 0.0000 0.0000 1.0000 0.0000
35 259.4 2.5 74.435 0.0000 0.0000 0.0000 1.0000 0.0000
36 290.1 5.1 74.435 0.0000 0.0000 0.0000 1.0000 0.0000
37 285.6 5.1 107.853 0.0000 0.0000 0.0000 1.0000 0.0000
38 301.4 7.2 107.853 0.0000 0.0000 0.0000 1.0000 0.0000
39 296.8 7.2 163.035 0.0000 0.0000 0.0000 1.0000 0.0000
40 287.6 7.2 55.182 0.0000 0.0000 0.0000 1.0000 0.0000
41 275.6 5.1 33.417 0.0000 0.0000 0.0000 1.0000 0.0000
42 275.6 2.5 46.669 0.0000 0.0000 0.0000 1.0000 0.0000
43 300.0 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
44 290.6 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
45 278.8 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
46 256.8 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
47 237.5 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
48 144.7 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
49 113.0 65.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089
50 107.1 1.0 49.179 0.0401 0.8748 0.0550 0.0212 0.0089

Table 7
Considered compositions for the C3MR feed (NG) and mixed refrigerant (MR).

Component Composition

NG MR

Nitrogen 0.0401 0.0700
Methane 0.8748 0.4181
Ethane 0.0550 0.2989
Propane 0.0212 0.2130
Butane 0.0089 0.0000
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various aspects will be conducted, along with a comparison with the
literature. In addition, this section provides a comparison with the in-
dustry that utilizes the C3MR process to produce LNG.

4.1. Optimized C3MR performance using knowledge-based optimization

This section will elaborate on the outcomes derived from the KBO
following the above three optimization steps (Section 4.1.1) and MR
composition (Section 4.1.2).

4.1.1. Optimizing C3/MR operational pressures and flow rates
The optimization process started with a SEC value of 0.3102 kWh/

kgLNG and after increasing the LP, decreasing the HP, and adjusting the
C3 flow accordingly to avoid any errors in the cycle, the value of the SEC
was reduced by around by around 2.15% at a C3 flow rate of 441.5 kg/s.
Fig. 7, illustrates the optimized C3 cycle, providing details on pressure,
temperature, and mass flow for each material stream in the optimized
scenario.

Regarding the MR Cycle, the optimization procedures align with
those employed in the C3 cycle, involving the optimization of process
LP, HP, and MR flow rate. However, it has been noted that the influence
of the HP in the MR cycle on the SEC is negligible. In contrast, the LP has
played a significant role, resulting in a decrease in SEC to 0.2876 kWh/
kg LNG, marking a roughly 7.29 % reduction from the base case (0.3102
kWh/kgLNG). This observation implies that the MR cycle has a more
pronounced impact on SEC compared to the C3 cycle. Therefore, for the
researchers who are looking to further investigate and optimize the
C3MR cycle, concentrating on the MR cycle appears promising due to its
noticeable effect on cycle efficiency. Fig. 8 depicts the optimized MR
cycle, presenting details on pressure, temperature, and mass flow for
each material stream in the optimized scenario.

4.1.2. Optimizing the MR composition
The optimization of the MR composition is performed at a constant

value for the C3 flow rate, specifically 441.5 kg/s. The highest pressure
recorded in the cycle was 48.60 bar, while the lowest was 1.31 bar.

The optimization process started with MR5,1, representing group
number 1 consisting of 5 candidate MR components (see Table 9). Four
of these components served as the base case: ethane, methane, nitrogen,
and propane. An additional component, i-Butane, was introduced. The
inclusion of i-Butane initially contributed to a reduction in SEC and MR
flow. However, this composition led to the formation of liquid in the
inlet streams of the C3 compressors. Moreover, it reduced the temper-
ature at the inlet of Col-3, effectively causing the cooler to function as a
heater due to the low temperature of the inlet flow compared to ambient
temperature.

Despite multiple attempts to address these issues, solutions increased
the SEC value and MR flow. Therefore, the compositions within this
group could be advantageous if leveraging the low temperature of the
MR in the compressor’s inlet has been utilized. This could be achieved
by circulating the MR as a cooling agent through a cooler to benefit from
the coldness of the MR stream. Consequently, the after-cooler

Table 8
Verification of the C3MR Model VS. Ghorbani et al. (Ghorbani et al., 2016)
results.

Parameter Ghorbani et al. (Wang
et al., 2013)

Present
work

Relative. error
(%) *

Feed natural gas flow,
(kg/h)

49.179 49.179 −

LNG flow, (kg/h) 45.344 45.343 0.00221
Flash gas flow, (kg/h) 3.835 3.836 0.02608
Specific power,
(kWh/kg LNG)

0.2594 0.2571 0.87820

Power of C-1, (kW) 0.2861 0.2865 0.13981
Power of C-2, (kW) 0.8797 0.8801 0.04547
Power of C-3, (kW) 0.6462 0.6464 0.03095
Power of C-4, (kW) 1.9399 1.941 0.05670
Power of C-5, (kW) 6.0706 6.07 0.00988
Power of C-6, (kW) 2.8203 2.821 0.02482
Cooling duty of HX-1,
(kJ/h)

7763 7759 0.05153

Cooling duty of HX-2,
(kJ/h)

9092 9093 0.01100

Cooling duty of HX-3,
(kJ/h)

14,730 14,730 0.00000

Cooling duty of HX-4,
(kJ/h)

10,755 10,760 0.04649

Cooling duty of HX-5,
(kJ/h)

52,041 52,030 0.02114

Cooling duty of HX-6,
(kJ/h)

6753 6746 0.10366

* Rel. Error = 100*|Ref. (Ghorbani et al., 2016)– Present work|/Ref. (Ghorbani
et al., 2016).

Fig. 7. C3 cycle with optimized values for pressure and mass flow parameters.
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temperature of the MR would increase before the compression process,
eliminating the presence of liquid in the compressor’s inlet stream.

In the case of group MR5,2, the mixed refrigerant comprised 5
components similar to group (1). However, i-Butane was substituted
with n-Butane, which has a higher weight compared to i-Butane. The
SEC value and MR flow were lower than the base case. Nonetheless,
HYSYS software reported certain issues, particularly an increase in the
cooling temperature of Col-3, similar to group (1). For instance, in case
4, the SEC is reduced to 0.2484 kWh/kgLNG, which is about 12 % lower
than the average of the other cases (0.270 kWh/kgLNG). However, in
case 4, a temperature cross in MR heat exchangers was observed. This
means that the temperature of the cold fluid exceeds that of the hot fluid
at certain points in the exchanger, which is not acceptable as it is not a
thermodynamically feasible process. This temperature cross makes these
compositions not practical as it violates thermodynamic principles.

Moving on to the 3rd group, MR5,3, it also comprised 5 components.
In this case, n-Butane from the previous group was substituted with
Refrig-14, a component lighter than the two components used in groups
(1) and (2). However, these compositions introduced issues in the cycle,
including the presence of liquid in the inlet streams for certain com-
pressors. Attempts to troubleshoot these errors required the reduction of
the low-pressure streams in the MR loop and an increase in MR flow.
This corrective action led to an elevation in the SEC value.

In the 4th group, the number of components was reduced to 4 from
the original 5 to simplify the manufacturing complexity of the MR. The
components included in group (4) are the same as those in the base case:

ethane, methane, nitrogen, and propane. Some trial compositions within
this group showed a temperature cross in the MR heat exchangers.
However, fine-tuning the MR flow rate proved effective in resolving the
issue with the heat exchangers, resulting in an SEC value lower than that
of the base case, literature values for similar capacities, and the indus-
trial benchmark.

The case producing the minimum SEC value without violating any
constraints is case 12, characterized by the following compositions:
[nitrogen: 0.0625, methane: 0.2230, ethane: 0.2230, and propane:
0.4672], with a mass flow of 298 kg/s. Fig. 9 illustrates the SEC values

Fig. 8. MR cycle with optimized values for pressure streams and mass flow.

Table 9
Molar fraction-based composition of 12 mixed refrigerant cases using KBO.

Group Case#* Candidate MR components MR flow[kg/s] SEC[kWh/kg LNG]

C2H6 R14 CH4 N2 C3H8 i-C4H10 n-C4H10

Base Case 0.33 0.00 0.25 0.07 0.35 0.00 0.00 446 0.3102
MR5,1** 1 0.25 0.00 0.22 0.06 0.39 0.08 0.00 317 0.2731

2 0.25 0.00 0.22 0.06 0.41 0.06 0.00 313 0.2715
3 0.25 0.00 0.22 0.06 0.42 0.05 0.00 310 0.2701

MR5,2 4 0.25 0.00 0.22 0.06 0.20 0.00 0.27 294 0.2484
5 0.25 0.00 0.22 0.06 0.38 0.00 0.10 320 0.2731
6 0.25 0.00 0.22 0.06 0.42 0.00 0.05 317 0.2702

MR5,3 7 0.24 0.02 0.22 0.05 0.48 0.00 0.00 301 0.2670
8 0.24 0.01 0.22 0.06 0.48 0.00 0.00 302 0.2667
9 0.25 0.03 0.22 0.06 0.48 0.00 0.00 296 0.2658

MR4, 4 10 0.34 0.00 0.24 0.07 0.34 0.00 0.00 294 0.2847
11 0.35 0.00 0.20 0.07 0.38 0.00 0.00 294 0.2672
12 0.25 0.00 0.22 0.06 0.47 0.00 0.00 294 0.2649

* In all cases, C3 flow is fixed at 441.5 kg/s, HP=48.60 bar, LP=1.31 bar.
** MRn,m, refers to group# m that has #of components equal n.

Fig. 9. SEC values for the 12 MR composition cases generated by KBO.
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for the 12 cases outlined in Table 9, emphasizing the improvement
observed between the base case and the optimal case. In summary, the
trials conducted in this section explored various compositions and
numbers of components. However, the important results are briefly
presented in Table 9. In the optimal case (case #12), the SEC value
(0.2649 kWh/kgLNG) is, which is 14.6 % lower than the base case value.

Fig. 10 illustrates the overall MR composite curve for the C3MR
process, comparing the base case with the optimal case. The x-axis
represents heat flow in MW, and the y-axis represents temperature in ◦C.
The light-yellow shaded portion indicates the performance of the MR
heat exchangers, while the light-green shaded portion represents the
performance of the C3 heat exchangers. Upon comparing both graphs, it
becomes evident that the performance of the MR heat exchangers in the
optimal case has improved. This is expressed by the reduction of the gap
between the hot and cold composites to almost below 1 ◦C. A detailed
discussion in Section 4.4 will validate that this improvement results
from an increase in the overall heat transfer coefficient rather than an
increase in the heat exchangers’ area. However, a segment of the curve,
particularly in the range of 2000–3000 MW heat flow, indicates a po-
tential for further enhancement of these MR heat exchangers to achieve
a lower SEC value. Concerning the pure refrigerant, a slight improve-
ment is noticeable in the optimal case compared to the base case.

It’s worth noting that MR compressor number 5 (C-5) in Fig. 3, is in
wet condition (followed by the model proposed by Ghorbani et al (Wang
et al., 2013) with a liquid phase fraction of 0.1. It is also noticed that the
MR temperature is still very low at the inlet of C-5. Thus, the coldness of
the MR stream could be further utilized in the cycle before compression
in C-5. A proposed approach is to get the benefit from the cold energy of

the inlet stream of C-5 (stream 1) in the precooling process of the MR
using a new shell-tube cooler (Col-4) added to the cycle before Col-2.
This modification aims to increase the temperature of stream 1 till it
reaches the saturated vapor status before entering C-5, which will help
in maintaining a longer lifetime for the compressor, as well, as to have a
lower maintenance activity. Also, from another perspective, recovering
the cold energy in stream 1 by Col-4 will help to reduce the load on Col-
2. As a result, this will minimize the water consumption consumed by
Col-2, if the cooler is using the water as a cooling median, or it will
reduce the power consumption if the cooler is using the air to cool down
the MR. This practical approach has been previously mentioned by Sleiti
et al. in (Sleiti and Al-Ammari, 2023). Fig. 11 illustrates a schematic of
the proposed cycle modification to benefit from the excessive cooling
energy in C-5′s inlet stream 1, with Col-4 representing the new cooler
added to the cycle to reduce the load on Col-2, and stream 3‘.

4.2. Optimized C3MR performance using constrained Bayesian
optimization

The CBO aimed to achieve the lowest possible SEC value using four
refrigerant components − nitrogen, methane, ethane, and propane − at
the lowest MR flow, with constant C3 flow and constant pressure values.
The algorithm of CBO follows certain constraints to ensure a reliable SEC
value without errors in the cycle. The code generated outputs that
included the SEC value and the number of violated constraints. Fig. 12
illustrates on the horizontal axis, the number of violated constraints (out
of 18 constraints) for each iteration with their frequency on the primary
vertical axis. For example, looking at the green columns in Fig. 12, out of
1200 optimization iterations, around 450 iterations were violating 6
constraints and around 160 iterations were violating 2 constraints. As
for the secondary vertical axis, it represents the trend of the SEC value in
correlation with the number of violated constraints. The SEC value is
lowest when a higher number of constraints are violated. However, as
the code acts more strictly to specified constraints (moving left on the
graph), the SEC value begins to increase. In the 0-constraint cluster,
multiple SEC values were obtained, and the optimal one was approxi-
mately 0.268 kWh/kgLNG at an MR flow of 301.08 kg/s and a constant
C3 flow of 441.5 kg/s. This SEC value represents an improvement of
around 13.6% compared to the base case. The optimal mass fractions for
the mixed refrigerant compositions at this optimal SEC value are (ni-
trogen: 0.0718, methane:0.2178, ethane: 0.2536, propane:0.4567).

Fig. 10. Overall composition curve for (a) base case (b) optimal case.
Fig. 11. Proposed schematic to recover the excessive cooling energy in
stream 1.
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4.3. Comparison of the optimized C3MR performance using KBO and
CBO

This section aims to compare the outcomes of both KBO and CBO
methods and highlight their respective strengths and limitations. Firstly,
concerning the objective function, assumptions, and constraints, both
approaches are subjected to the same criteria. Secondly, both ap-
proaches utilized the identical cycle created in Aspen HYSYS V12,
installed on the same PC to prevent roundoff errors. In terms of meth-
odology, the KBO approach involved a three-step optimization process:
initial optimization of the pressures and mass flow of the C3 loop, fol-
lowed by the optimization of the pressures and mass flow of the MR loop
and concluding with the optimization of the MR composition and mass
flow. Conversely, the CBO approach relied on the results of step 2 from
KBO as a baseline, initiating optimization of the MR composition and
flow rate. Fig. 13 provides a summary of the results obtained from both
approaches at each step. Analyzing the KBO results on the left side of the
figure reveals that optimizing the MR loop led to a more significant
improvement in the SEC value compared to the C3 loop, with the most
significant contribution coming from modifying the MR composition. As
for CBO, which showed a 7.3 % improvement over the base case,
resulted in a 13.6 % reduction in the SEC value compared to the base
case. In summary, both approaches yield SEC values that are signifi-
cantly better than the base case by approximately 13–14 %.

The MR compositions achieved by both approaches are remarkably
similar. The predominant component in the MR is propane, followed by
ethane, methane, and nitrogen having the lowest proportion. This im-
plies that approximately 46 % of the MR composition is allocated to the
heavier hydrocarbons. This composition contributes to the low SEC
values as the compressors experience a reduced load, requiring less
power to compress the flow due to the presence of heavier hydrocarbons
compared to the base case. Knowing that both approaches reach similar
SEC values, each method has its own strengths and limitations.
Regarding resource requirements, the KBO approach demands expertise
in thermodynamics and mechanical aspects, while the CBO requires

coding proficiency, particularly in using the Bayesian optimization
package with Python. In terms of exploration and exploitation, KBO
relies on the knowledge and experience of the expert, whereas CBO
explores a larger sample space within the constraints, accuracy limita-
tions, and computational power of the PC. Regarding adaptability, the
expert using KBO adjusts the simulation based on their experience and
observations, while the CBO algorithm can adapt and improve through
many iterations. Considering the speed of iterations, KBO is a slower
approach since it is controlled by expert availability, whereas CBO is
faster as it operates as an automated process. Thus, to optimize out-
comes, we propose employing the KBO in steady-state conditions when
plant operations are trouble-free, and there is sufficient time for cycle
enhancement without urgency. Conversely, in dynamic conditions
characterized by machine issues or a shortage of specific MR compo-
nents, the recommendation is to utilize the CBO approach. This is
attributed to its capacity to conduct numerous iterations quickly, and
the accessibility it has to the control systems of the machine and the
software, providing an alternative solution without human intervention.

4.4. Comparison with other optimization studies

As both KBO and CBO approaches reach a comparable SEC value, this
section will rely on the SEC value optimized by KBO. This value will be
compared with the base case, values reported in the literature for plants
with similar capacity, and industrial SEC values as documented in some
references.

4.4.1. Comparison with the base case
In this subsection, the optimal case obtained by KBO will be

compared with the base case, which shares the same capacity of 120 kg/
s, mirroring the scale of the model developed in this study to represent a
large-scale plant. The SEC value of the base case simulates the existing
nominal conditions in the literature for the C3MR, and it also represents
the typical range for SEC in the industry.

Table 10 highlights important parameters for comparing the per-
formance of the C3MR liquefaction process between the base case and
the optimal case determined by KBO. Both cases use the same compo-
nents for the mix refrigerant (MR), including N2, CH4, C2H6, and C3H8.
However, in the optimal case, there is an increased portion of heavy-
weight hydrocarbons such as C3H8, with a slight reduction in the flow
rates of both MR and pure refrigerant compared to the base case (BC).
The table provides insights into compressor power consumption, heat
exchanger (HX) cooling duties, and cooler loads for both cases, which
will be discussed in detail. Additionally, the table highlights improve-
ments in the COP, SEC, and CO2 emissions as performance indicators.

4.4.1.1. Compression power. In terms of compression power for both the
base case (BC) and the optimal case, the latter recorded a reduction in
compression power for the six compressors in the cycle, amounting to
approximately 18 MW. This reduction is reflected in the SEC value, as
SEC is primarily influenced by the compression power consumed by the
compressors and the LNG flow, as per Eq. (1). Given that the LNG flow
remains constant, and the compression power is reduced by 18 MW, the
SEC value decreases from 0.3102 to 0.2649 kWh/kg LNG, representing
an approximate 14 % improvement compared to the BC. Fig. 14 illus-
trates the distribution of the total compression power among the six
compressors in both the BC and the optimal case. From the figure, it is
observed that the distribution percentage has not changed significantly,
with the MR compressors consuming approximately 70 % of the total
compression power. This highlights that, for future research opportu-
nities, focusing on optimizing the MR loop will likely have a more
substantial impact on the C3MR cycle performance than optimizing the
C3 loop. Nevertheless, in terms of megawatts (MW), the power con-
sumption by the MR compressors is reduced, as highlighted in Table 10.

Internal calculations demonstrate the 14 % reduction in the SEC

Fig. 12. Results of CBO iterations.

Fig. 13. Summary of SEC improvement at each optimization step.
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value, as achieved in this study, holds significant consequences when
translated into potential cost savings. In particular, the optimized case
saves about 0.042 kWh/kgLNG, which is equivalent for 4.77 million
$/year for each C3MR train at an electricity price of 3.50 ¢/kWh. Thus,
tacking QatarEnergy-LNG as an example, which possesses 14 AP-
C3MRTM cycles operating 14 LNG trains as mentioned in (Air Products),
the amount of savings if the proposed optimal case of this study is
applied, will be around 72.59 million $/yr.

An important note to add is that the reduction in compression power,

leading to substantial cost savings, will benefit both existing systems
operated by the C3MR process and future systems. This reduction will
lower operational costs for current systems and decrease both the capital
and operational costs for future systems. Furthermore, since AP-
C3MRTM acts as the foundation for the AP-X LNG process, the optimized
case can also yield savings for the AP-X process.

4.4.1.2. HX’s cooling duty. Regarding the cooling duty of the heat ex-
changers, a comparison between the base case (BC) and the optimal case
indicates a decrease in the total cooling duty for the six heat exchangers
from 284.4 MW to 279.7MW. Consequently, a more compact size for the
HXs becomes adequate to accomplish the same load of the base case.
This improvement is useful for existing C3MR cycles equipped with
modular HXs, allowing for the separation of some modules to be utilized
in more useful applications. Additionally, this improvement holds value
for future systems, as it requires a smaller HX size, thereby reducing
space requirements.

4.4.1.3. Coolers load. In terms of coolers load, there are 3 coolers in the
C3MR cycle which are responsible for cooling the flow at the outlets of
the process compressors. Table 10, presents

∑3
1QCooler,n in MW for the

base case and the optimal case by the KBO approach. It is noticed that
the total coolers’ load for the optimal cycle is lower than the base case by
around 8.3 %. This decrease indicates that less power consumption is
required by the coolers of the optimized case to cool down the MR in the
cycle if it is an air-cooled system. In addition, the optimized cycle will
require, a reduced water flow rate and compression power consumed by
pumps if the coolers depend on water as a cooling median. Such im-
provements are advantageous for both existing C3MR cycles and future
cycles.

4.4.1.4. CO2 emissions. Lastly, an essential consideration is the current
importance of CO2 emissions nowadays. These emissions can occur
because of energy-intensive procedures, including the compression and
cooling of natural gas, as well as from the flaring or combustion of by-
products. Such emissions significantly contribute to climate change,
requiring careful monitoring and concerted efforts to develop ap-
proaches aimed at their reduction. In this context, the optimal case
successfully reduced CO2 emissions from 48,247 to 41,201 tons per year,
translating to a saving of approximately 7 tons of CO2 emissions annu-
ally. To contextualize these numbers, a comparative analysis was con-
ducted, comparing the optimized case, base case, and other liquefaction
processes in terms of CO2 emissions, as illustrated in Fig. 15. These
values were computed based on the SEC values outlined in (Vatani et al.,
Feb. 2014), utilizing Equation (12) from (Sleiti et al., 2023). The CO2
emission quantities, measured in tons per year, were calculated for each
process, considering an NG flow of 120 kg/s, and assuming the machine
operates throughout the entire year with a CO2 emission rate of
0.0000411 tons/kWh (Sleiti et al., 2023). Fig. 15 reveals that the pro-
posed optimized C3MR process in this study achieves a remarkable 17 %

Table 10
C3MR process optimization results.

Parameters Base case Optimum case by KBO

Feed natural gas flow, (kg/h) 120 120
LNG flow, (kg/s) 110.6 110.6
Flash gas flow, (kg/s) 9.36 9.36
C3 flow rate (kg/s) 446 441.5 ↓
MR flow rate (kg/s) 300 294 ↓
MR Composition N2: 0.0725

CH4: 0.2480
C2H6: 0.3323C3H8:
0.3472

N2: 0.0625
CH4: 0.2230
C2H6: 0.2473C3H8:
0.4672

Power of C-1, (MW) 2.460 2.581
Power of C-2, (MW) 8.782 8.031
Power of C-3, (MW) 6.584 5.504
Power of C-4, (MW) 20.08 16.98
Power of C-5, (MW) 56.44 45.75
Power of C-6, (MW) 29.20 26.67
∑6

1ẆComp,n(MW) 123.6 105.5 ↓
Specific power, (kWh/kg
LNG)

0.3102 0.2649 ↓

Cooling duty of HX-1, (MW) 23.13 32.47
Cooling duty of HX-2, (MW) 27.01 23.69
Cooling duty of HX-3, (MW) 43.40 38.46
Cooling duty of HX-4, (MW) 23.90 21.89
Cooling duty of HX-5, (MW) 148.95 147.0
Cooling duty of HX-6, (MW) 18.00 16.18
∑6

1QHX,n(MW) 284.4 279.7↓
Qminimum(MW) 92.28 92.28
QInternal(MW) 192.20 187.42 ↓
COPOverall 2.30
COPindicative 0.75 0.875 ↑
Cooler Load of Q_AC-1, (MW) 155.35 149.62
Cooler Load of Q_AC-2, (MW) 44.32 47.61
Cooler Load of Q_AC-3, (MW) 16.25 0.659
∑3

1QCooler,n(MW) 216 198 ↓
CO2emissions(tons/year) 48,247 41,203 ↓
Economic results of operational costs
Liquefaction capacity, (tons per
day)

10,000 10,000

Utilization factor, (%) 85 85
Number of trains 14 14
Operational costs (million
$/year)

497.04 424.45

Cost savings million $/year,
(at an electricity price of
3.50¢/kWh)

0 72.59

Fig. 14. Compressors power consumption percentage for BC and optimal case.
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reduction in CO2 emissions compared to the base case and up to 35 %
compared to four other technologies.

CO2emissions

[
tons
year

]

=SEC[
kWh
kgLNG

]×ṁNG[
kg
h
]×CO2emissions

[ tons
kWh

]
×8760[

h
year

]

(12)

4.4.2. Comparison with the literature
Table 11 displays two papers from open literature that share the

same capacity as the present study and focus on optimizing the perfor-
mance of the C3MR process. We obtained the optimal SEC (using the
proposed approach in this study) under the same optimization condi-
tions and simulation setting of these studies (see Appendix A, Table A1).
Examining the table reveals that the optimized case demonstrates a
percentage improvement ranging from 14.5 % to 38.6 % when
compared to (Wang et al., 2013), and (Furda et al., 2022). This confirms
the robustness of the proposed approach to identify the optimal per-
formance of the process under different gas compositions and operating
conditions.

4.4.3. Comparison with the industrial SEC
According to industrial values documented in (Alabdulkarem et al.,

2011); (Sun et al., 2016), and (Furda et al., 2022), the percentage
improvement of this study over the reported SEC ranges between 9 %
and 30 %. This indicates that comparing the industrial values with the
optimized case will demonstrate superior performance for the current
study. Hence, we recommend considering the optimization of both
existing and future LNG trains operating with C3MR using the proposed
optimized case. This option has demonstrated greater efficiency, cost-
effectiveness, and a smaller footprint compared to existing systems.

5. Conclusions

This study presents a comprehensive exploration of the propane pre-
cooled mixed refrigerant (C3MR) process for natural gas liquefaction,
aiming at performance optimization (minimizing energy consumption of
the process). Two optimization approaches were performed in this
study: Knowledge-based optimization (KBO) and constrained Bayesian
optimization (CBO). Additionally, practical considerations for cycle
components were taken into account. The key findings of this study are
summarized as follows:

• The KBO approach successfully achieved a 14.6 % reduction in SEC
compared to the base case. Similarly, the CBO approach reduced SEC
by approximately 13.6 %, closely aligning with the KBO results.

• The proposed optimization approach in this study reduces the SEC by
14.5 % to 38.6 %. compared to the SEC of the C3MR in open
literature.

• The SEC reduction to 0.264 kWh/kgLNG is translated into an 18 MW
decrease in compression power, yielding annual savings of 4.7
million $ per C3MR process with a capacity of 10,000 TPD.

• The coefficient of performance (COP) of the cryogenic cooling pro-
cess recorded an improvement of approximately 15 % compared to
the base case. This enhancement implies a reduction in the allocated
area for the heat exchangers and a decrease in the internal cooling
losses within the cycle.

• The optimization process reduced cooler duty, indicating lower
power consumption for air-cooled systems and reduced water flow
rates for pumps in case of water-cooled systems.

• CO2 emissions decreased by 7 tons per year, representing a 17 %
reduction when comparing the optimal case to the base case.

The results of these optimization approaches demonstrated the su-
perior performance of the proposed optimal case against the base case
(See Table 10), literature (Table 11), and industrial SEC (Table 12),
consistently highlighting the efficiency and cost-effectiveness of the
proposed optimization approach. Further economic and multi-objective
optimization (reducing both energy consumption and capital and
operational costs of LNG processes) following the presented approach in
this study is recommended for future work. The outcomes provide
tangible benefits for the existing and future energy-intensive LNG pro-
cesses with enhanced efficiency, reduced environmental impact, and
optimized resource utilization.
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Table 11
Comparative summary of related studies.

Ref. Optimization technique Capacity, TBD Ref. SEC, kWh/kgLNG SEC in this study,
kWh/kgLNG

% Improvement in SEC

(Wang et al., 2013) Sequential search 8219 0.408 0.2506 38.58
(Furda et al., 2022) GA, NSGA-II 9590 0.31 0.2651 14.48

* This negative value will be justified below.

Table 12
Comparative summary with C3MR industrial values for SEC.

Ref. SEC, kWh/kgLNG % Improvement in SEC

(Alabdulkarem et al., 2011) 0.344–0.375 22.94 %–29.36 %
(Sun et al., 2016) 0.321 17.38 %
(Furda et al., 2022) 0.292–0.381 9.18 %–30.40 %
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Appendix A

Table A1
The optimal SEC of the C3MR process obtained in this study unser the same conditions and simulation setting in references (Wang et al., 2013) and (Furda et al., 2022).

Ref. Key setting parameters NG composition (Methane/Ethane/Propane/Butane/
Nitrogen)

EOS Optimal SEC in this
study
(kWh/kgLNG)

ACT,
(oC)

ηc,
(%)

TNG,
(oC)

TLNG,
(oC)

PNG,
(bar)

PLNG,
(bar)

(Wang et al.,
2013)

30 75 25 − 161 50 1.01 (96.92, 2.94, 0.06, 0.01, 0.07), mole fraction % PR 0.2506

(Furda et al.,
2022)

35 78, 75 27 − 160 65 1.01 (87.5, 5.5, 2.1, 0.5, 0.3, 4.1), mass fraction % PR 0.2651
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