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Phase equilibria of the ternary system water /acetic acid /2-pentanol
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Abstract

Liquid-liquid equilibria for the ternary system water + acetic acid + 2-pentanol over the temperature range
288-323 K were used to estimate the interaction parameters between each of the three compounds for the
NRTL and UNIQUAC equations, and between each of the main groups of H,0, CH, (paraffinic CH,), OH and
COOH for the UNIFAC equation as a function of temperature. The NRTL model gave the lowest errors in
correlating the overall equilibrium compositions of the studied system.
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1. Introduction

There is always a need for precise liquid-liquid equilibrium data in considering extraction
processes. Excess free energy models, such as the non-random, two-liquid model (NRTL) [1], the
universal quasi-chemical model (UNIQUAC) [2] and the universal function-group activity coefficients
model (UNIFAC) [3], have been successfully applied for the correlation of several liquid-liquid
systems. The experimental data were regressed to obtain numerical values for the interaction
parameters of these models at different temperatures.

The extraction of dilute organic acids in aqueous solutions can be carried out using alcohols and
other alkaline solutions [4—6]. Various methods of recovering acetic acid from aqueous mixtures have
been reviewed by several investigators [7].

The objective of this work is to study the liquid-liquid phase equilibria of the ternary system
(water + acetic acid + 2-pentanol) at several temperatures and to test the capability of the various
equilibrium models to correlate these data. The compositions were measured at 288, 298, 303, 308,
318 and 323 K, and regressed by the NRTL, UNIQUAC and UNIFAC models.
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2. Experimental section
2.1. Chemicals

Acetic acid and 2-pentanol were supplied by Fluka at a purity of (98 + )%. Water was distilled and
demineralized before being used.

2.2. Apparatus and procedure

The experimental apparatus used for extraction consisted of a glass cell fitted with a water jacket in
order to maintain a constant temperature. The temperature was controlled within + 0.2 K inside the
cell. The cell was connected to a Julabu PC-F18 water bath. The mixture was prepared by mass,
placed in the extraction vessel, and stirred for 0.5 h, and the mixture was then left to settle for 2 h.
Longer stirring and settling periods did not result in any detectable change in equilibrium concentra-
tions. Samples were taken by a syringe from the upper layer and through a sampling stopcock from
the lower layer. A series of LLE measurements were made by changing either the temperature or the
composition of the mixture.

The concentrations of acetic acid and 2-pentanol in each phase were measured using gas
chromatography. A Chrompack CP9001 gas chromatograph equipped with a flame ionization detector
was used. A 25 m X 0.32 mm ID WCOT fused silica capillary column (coated with FFAP) was used
isothermally. The temperature of the oven was held at 140°C and the injection port temperature was
held at 250°C.

By knowing the initial mass of each component, measuring the volume of each phase and assuming
that the density of the aqueous phase equals that of pure water, the concentration of water in each
phase is calculated by material balance. To verify these calculations, random test runs were
investigated by measuring the concentration of water using gas chromatography. The gas chromato-
graph in this case was equipped with a TCD detector. A 25 m X 0.53 mm ID PORAPLOT Q capillary
column (coated with PORAPLOT Q) was used isothermally. The temperature of the oven was held at
175°C, the injection port temperature was held at 250°C and the detector temperature was 300°C. The
root mean square deviation (RMSD%) between the measured and calculated mole fractions was
3.95%.

2.3. Models and predictions

If a liquid mixture of a given composition and at a known temperature is separated into two phases,
i.e., at equilibrium, the composition of the two phases can be calculated from the following equations

yixi=y/x]' (1)
=2z +27] (2)

where z;, z; and z]' are the numbers of moles of component i in the system and in phases I and I,
respectively, and vy} and /" are the corresponding activity coefficients of component i in phases I and
II as calculated from the equilibrium model, i.e., the NRTL, UNIQUAC and UNIFAC models. The
interaction parameters between water, acetic acid and 2-pentanol are used to estimate the activity
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Table 1

The R and Q values for the used groups and compounds

UNIQUAC equation

Compound r; q;
water 0.9200 1.4000
acetic acid 2.2024 2.0720
2-pentanol 4.6000 4.2080
UNIFAC model

Group R; Q;
water (H,0) 0.9200 1.4000
CH, 0.9011 0.8480
CH, 0.6744 0.5400
CH 0.4469 0.2280
OH 1.0000 1.2000
COOH 1.3013 1.2240

coefficients from the NRTL and UNIQUAC equations, whereas the interaction parameters between
H,0, (CH,, CH,, CH, C), OH and COOH groups were used to predict the activity coefficients from
the UNIFAC model. The R; and Q; values for the UNIFAC groups, and the r; and g; values for the
UNIQUAC compounds are shown in Table 1.

Eq. (1) and Eg. (2) are solved for the mole fraction ( x) of component i in each liquid phase. This
method of calculation gives a single tie line.

The NRTL equation is given by [8]

T o

=

T

where
x.exp(—a;7;)
= 4

Z xexp( — ay,;7;;)
k=1

=
I

or

Z (TiGjixi)
Iny, = ———+ E
Z (Grixy) 7=l

k=1

c
xJGij kZ ka, kj
Tij— T C (%)
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where
Gij =exp(— aiﬂ'ij) (6)

where «;; is an adjustable parameter related to the degree of randomness of the mixture, and «
equals o ;.

ij

Tij = Lgin_ngj) =ay/T @
(g i T gii) .
Tﬁ = jRT = aﬁ/T (8)

The parameter g, ; characterizes the interaction energy between compounds i and j, and g;; equals
8 it

The NRTL equation is fitted to the experimental compositions by optimizing the interaction
parameters a - and a . The optimized interaction parameters could be correlated with temperature.

The UNIQUAC equatlon is given by [8]

—=len(1p (9)

z ¢ 6, C
+ E E thzln 11, - Z qixiln 2 ejy}i

RT 5 i=1 i i=1 j=1
or

Iny, = InyS + InyR} (10)
where

Inyf =In (Zj + iqlln( ; +1, —le']ilxl (11)

C
- Y| i (12)
=l Z Oka/

C
Inyt=g¢]|1- ln( Y 0T,

j=1

The parameters ¥, and 6, are given by the following equations

x;r;
¥, =— (13)
in’i
i=1
X:q;
0,=—¢ (14)

Z X 4q;
i=1

T, -—exp( (u;; ujj)/RT) (15)
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T ( T ) 16
=g _
J Xp RT ( )
The parameter u,; characterizes the interaction energy between compounds i and j, and u,; equals
Uj.
z

1= 5 (ri—q)—(r;=1) (17)

Z=10 (18)
and

(uij—ujj =a8-R (19)

The UNIQUAC equation is fitted to the experimental compositions by optimizing the interaction
parameters a?j and aﬁ. The optimized interaction parameters could be correlated with temperature.
The UNIFAC equilibrium model is given by [8]

ny?= Y vP(nl,—In[P) (20)

k
all functional
groups in the

mixture
6T
Inl,=0, l—ln(Zf)mek)—Z—ZLnbk—;— (21)
XQO
0 = —=—— 22
m ZXnQ" ( )

where n, m and k are counters for the UNIFAC groups and the counters ¢ and j are used for different
compounds in the system

Z Vyg)xi

X, ==t 23

" ZZV,E"%- )
aUk

T, = -= 24

SWEEY o

The UNIFAC equation is fitted to the experimental compositions by optimizing the interaction
parameters as,. The optimized interaction parameters could be correlated with temperature

ri= E Vl(ci)Rk (25)
k

q;= Z vi"0, (26)
k

Egs. (9-11) and Eq. (13) are also applicable for the UNIFAC model.
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3. Discussion of the results

The measured equilibrium mole percentages are shown in Tables 2—-7. These data were used to
calculate the optimum UNIFAC interaction parameters between the main groups of H,O, (CH ;, CH,,
CH, C), OH and COOH. They were also used to determine the optimum UNIQUAC and NRTL
interaction parameters between water, acetic acid and 2-pentanol.

The NRTL and UNIQUAC equations were fitted to experimental data using an iterative computer
program developed by Sgrensen [9]. The UNIFAC model is optimized using the same objective
function of this program.

The NRTL model was fitted with fixed values of o for each pair of compounds by optimizing the
corresponding values of a?} and a?}. The optimization results were judged by caiculating the
corresponding RMS values. A fixed o value of 0.2 between each pair of compounds was found to be
satisfactory.

The resulting values of the interaction parameters between each pair of the UNIFAC, UNIQUAC
and NRTL groups (or compounds) were fitted linearly with the temperature according to the
following equation

a;;= al+ a (T — 273.15) (27)

where T is the temperature in Kelvin and a?j and a! ; are the correlation constants between each two
groups or components in the system. The values of the correlation constants for the three equilibrium
models are shown in Table 8. The corresponding calculated tie lines for the three models are shown in
Tables 2-7.

Table 8

Optimum interaction parameters according the equation: a;; = af +aj; (T —273.15)

i j a) aj a5 aj;
UNIFAC

H,0 CH;,CH,,CH 90.012 2.645 1673.650 ~25.767
H,0 OH —193.301 —3.255 1715.190 —28.596
H,0 COOH —50.262 —13.988 1100.810 —34.580
CH,,CH,,CH OH —10.800 9.021 - 164.329 7.297
CH,,CH,,CH COOH 121.087 —2.318 193.476 —5.431
OH COOH ~215.663 12.148 678.072 —34.610
UNIQUAC

H,0 CH;COOH 98.918 -2.680 49.791 -0.792
H,0 2-pentanol 88.417 0.898 259.452 —1.582
CH,;COOH 2-pentanol 16.634 —1.184 53.501 —2.341
NRTL (a = 0.2)

H,O CH;COOH 1177.510 -39.121 —293.724 7.312
H,O 2-pentanol 1264.500 6.568 14.590 —1.799

CH,COOH 2-pentanol 548.035 —34.514 —235.174 15.397
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Table 9

RMSD% values for the studied models

T/°C NRTL UNIQUAC UNIFAC UNIFAC ?
15 1.76 2.82 1.65 4.30

25 1.36 2.44 2.05 13.00

30 0.96 3.21 1.27 6.88

35 0.87 2.71 0.97 5.28

45 0.23 0.22 1.77 6.13

50 0.76 3.06 0.76 7.20
Average 0.99 2.41 1.41 7.13

? Literature interaction parameters [10].

The percentage root mean square deviations (RMSD%) are calculated from the results of each
model at each temperature according to the following formula

RMSD% = (100%){&[2,.2 Xy = Trcad))] /4n}'/2 (28)

where i = water or acetic acid, j=phase lorIll and k=12,...,n (tie lines).

The average RMSD% values for the three equilibrium models are less than 3% (see Table 9). The
predictions from the NRTL model has the lowest RMSD values especially at high temperatures; the
average RMSD value for NRTL is 0.99%. The RMSD values for UNIFAC predictions corresponding
to the interaction parameters optimized in this work (1.41% on average) are comparable to those of
the NRTL equation. The UNIQUAC equation predicted the overall composition with a reasonable
error; its average RMSD value (2.41%) is higher than those of the NRTL and UNIFAC models, and
therefore it is considered to be less accurate than the NRTL and UNIFAC models in correlating the
phase equilibria of the studied system.

Phase compositions calculated by the UNIFAC model using the optimized interaction parameters in
this work were compared with those obtained from the literature [10]. The predictions corresponding
to this work were noticeably better than those of the literature values. A comparison is shown in Table
9.

4. Conclusions

The interaction parameter a;; was used to fit the three models to experimental data and was
correlated with temperature. The NRTL equation was the most accurate model in correlating the
phase equilibrium compositions of the studied system. The average RMSD values were 0.99%, 1.41%
and 2.41% for NRTL, UNIFAC and UNIQUAC, respectively.

5. List of symbols

a optimized interaction parameter
C number of components
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excess property

interaction energy within a pair of molecules
adjustable parameter

relative surface area per molecule

area parameter of UNIFAC groups

number of segments per molecule

universal gas constant

volume parameter of UNIFAC groups
Root Mean Square Deviation /%

absolute temperature /K

adjustable parameter

interaction energy

equilibrium mole fraction of component i
mole fraction of UNIFAC groups

number of moles of component {

lattice coordination number, set equal to 10

DARIODN Q% m

w—
~. z
2]
o

N <= & 44

5.1. Greek symbols

adjustable parameter in the NRTL equation
number of UNIFAC groups per compound
segment fraction

activity coefficient

residual activity coefficient of UNIFAC groups
area fraction

adjustable parameter in the NRTL equation

AR e TR

5.2. Superscripts

combinatorial part of the activity coefficient
NRTL equation

UNIQUAC equation

residual part of the activity coefficient
UNIFAC model

RO ZNO

5.3. Subscripts

counter for compounds (or groups)
counter for compounds (or groups)
counter for UNIFAC groups
counter for UNIFAC groups
counter for UNIFAC groups

3T 3 -~
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