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Abstract

Despite recent biomedical breakthroughs and large genomic studies growing mo-

mentum, the Middle Eastern population, home to over 400 million people, is un-

derrepresented in the human genome variation databases. Here we describe insights

from Phase 1 of the Qatar Genome Program with whole genome sequenced 6047

individuals from Qatar. We identified more than 88 million variants of which 24

million are novel and 23 million are singletons. Consistent with the high con-

sanguinity and founder effects in the region, we found that several rare deleterious

variants were more common in the Qatari population while others seem to

provide protection against diseases and have shaped the genetic architecture of

adaptive phenotypes. These results highlight the value of our data as a resource to

advance genetic studies in the Arab and neighboring Middle Eastern populations and

will significantly boost the current efforts to improve our understanding of global

patterns of human variations, human history, and genetic contributions to health and

diseases in diverse populations.
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1 | INTRODUCTION

Several countries worldwide have initiated large‐scale population

genomics projects representing various regions from Africa, Europe,

North and South America, South Asia, and Australia (Gudbjartsson,

Helgason, et al., 2015; Gudbjartsson, Sulem, et al., 2015; Gurdasani

et al., 2019; Manolio et al., 2019; Naslavsky et al., 2020; Stark

et al., 2019; Turro et al., 2020; Wu et al., 2019). In addition t6o this

groundbreaking work, there are also ongoing large collaborative

efforts to increase diversity in human genetics, including the All of Us

Research Program (Collins & Varmus, 2015), the Human Health and

Heredity in Africa (H3Africa) Initiative (C. Rotimi et al., 2014), and the

TOPMed Program (Taliun et al., 2021). Such studies provided

valuable new insight into human disease, population structure, and

history of migration (Boomsma et al., 2014; Chiang et al., 2018;

Francioli et al., 2014; Gurdasani et al., 2019; Okada et al., 2018;

Scott et al., 2016; Wu et al., 2019). Despite this notable focus on

diversity, there is still considerable effort needed to cover the broad

diversity of world ancestries to ensure that discoveries do not con-

serve historical disparities and to uncover the various diseases

etiologies that remain uncharacterized to date (Bentley et al., 2017;

Landry et al., 2018; Mills & Rahal, 2019). The Middle‐East regions are

still underrepresented in the public databases (Abou Tayoun &

Rehm, 2020). For instance, the latest version of gnomAD database

(3.1) contains data from only 158 Middle‐eastern genomes

(Karczewski et al., 2020). The Qatar Genome Program (QGP) is a

population genome project based in Qatar aiming to sequence the

genomes of local population for the purpose of supporting genomic

medicine in the country and the region. As part of Phase 1, it has

sequenced the whole genomes of 6045 subjects whose specimens

were collected and biobanked by the Qatar Biobank (QBB) (Al Thani

et al., 2019) (Figure 1a).

F IGURE 1 Qatar Genome Program, timelines, and regional context. (a) Three phases project timeline and current status. (b) Qatar
Geographical map. Qatar is located in the north‐eastern coast of the Arabian Peninsula with an area of 11,521 km2 sharing borders with Saudi
Arabia from the south and maritime borders with Bahrain, UAE, and Iran. (c) The Arabian Peninsula is believed to be the first stop in human
migration out of Africa, and home for the first ancient Eurasian populations, whom later spread throughout Asia and Europe
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Qatar occupies a relatively small surface area of 11,521 km2 on

the western coast of the Arabian Gulf. Qatar shares its southern

border with Saudi Arabia and a maritime border with Bahrain, UAE,

and Iran (Figure 1b) and has a population of approximately 2.8

million. The country is located at a historic intersection of ancient

and recent migration and admixture (Arauna et al., 2017;

Hellenthal et al., 2014). Similar to other countries in the region, it is

known for its unique population structure that is characterized by

a high consanguinity rate and increased prevalence of rare genetic

diseases (Al‐Gazali et al., 2006; Anwar et al., 2014; Hunter‐Zinck

et al., 2010; Rodriguez‐Flores et al., 2014, 2016; Scott et al., 2016).

Recent genetic studies identified indigenous Arabs as the direct

descendants of the first Eurasian populations established by early

migrations out of Africa (Bentley et al., 2017) (Figure 1c). More-

over, sizable proportions of the population have more recent

Persian and African ancestry (Harkness & Khaled, 2014). QBB in-

cludes comprehensive phenotyping, providing excellent synergy

for discovery when combined with the whole genome sequencing

(WGS) data, that also enable accurate estimate of allele fre-

quencies for rare and common variants, and well‐defined polygenic

risk scores for many disease traits. All such features of the local

population potentiate discoveries, not only related to millions of

people in the immediate neighboring region but also inform genetic

studies in other parts of the world.

2 | MATERIALS AND METHODS

2.1 | QBB subject recruitment

The QBB is a longitudinal population‐based cohort study

examining a population sample of permanent Qatari residents

(Qatari nationals, other Arabs and non‐Arabs) with follow‐up

every 5 years (Al Thani et al., 2019). To achieve a representative

sample of the permanent population that resides in Qatar, the

inclusion criteria of the QBB are: (1.) To be Qatari nationals or

resident in Qatar for at least 15 years and (2.) To be 18 years or

older. QBB is inclusive and language specification and tribes name

or origin are not part of the inclusion criteria. The participants

are recruited from the general public via either social media and

the QBB website or through personal recommendations of family

and friends.

The study covers extensive baseline sociodemographic data,

clinical, and behavioral phenotypic data, biological samples (i.e.,

blood, urine, saliva, DNA, RNA, viable cells, and others), as well as

clinical biomarkers and Omics data (i.e., genomics, transcriptomics,

proteomics, metabolomics, etc.) (Al Thani et al., 2019). Currently the

QBB has reached 44.7% of the target population (60,000) and more

than 2 million biological samples. For this study, data from 6218

Qatari nationals participants were available from QBB population

cohort. The percentage female was 56.74% and the mean age was

40 years (SD: 12.7 years).

2.2 | Ethics statement

All QBB participants signed an Informed Consent Form before their

participation; Ethical approval for QBB study protocol was obtained

from the Hamad Medical Corporation (HMC) Ethics Committee in

2011 and continued with QBB Institutional Review Board (IRB) from

2017 onwards and it is renewed on an annual basis (IRB protocol

number, QF‐QGP‐RES‐PUB‐002).

2.3 | QBB sample collection

Physical and clinical measurements were collected by the QBB, in

addition to biological samples (approximately 60ml of blood, 5 ml of

saliva, and 10ml of urine). Participants were instructed for 8 h fasting

before the visit, but due to different visit shifts samples were mostly

spot specimens. Blood samples were analyzed to assess 66 different

biomarkers associated with disease risk factors. Hematology and

blood chemistry biomarkers were analyzed at Hamad General

Hospital laboratories. EDTA blood samples were separated by cen-

trifugation into plasma, buffy coat (leukocytes), and erythrocytes.

All collected samples were aliquoted and stored in three different

locations (Al Thani et al., 2019).

2.4 | DNA isolation and quality control

Before DNA isolation, each buffy coat sample was registered into the

Laboratory Information Management System (LIMS) and assigned

with three identifiers: (i.) the aliquot code, (ii.) a subject‐specific

personal number, and (iii.) a sample‐specific serial number. Samples

were received in 2D‐coded FluidX tubes (Brooks Life Sciences). Upon

receiving, samples were scanned on a 2D FluidX Perception Barcode

Reader to check for consistency against the sample submission form.

The buffy coat samples were processed for DNA isolation using the

automated QIASymphony SP instrument according to Qiagen MIDI

kit protocol's recommendations. The assessment of DNA quantity

and quality was carried out using NanoDrop 8000 (Thermofisher),

FlexStation 3 (Molecular Devices), and LabChip GX (Perkin Elmer).

The absorbance at 260 and 280 nm wavelength was measured on

Nanodrop 8000 and used to check DNA purity. A fluorescence‐based

quantification was performed on FlexStation 3 using Quant‐iT Pico-

Green dsDNA Assay (Thermofisher). Briefly, an aqueous working

solution of the Quant‐iT PicoGreen reagent was prepared on the day

of the quantification experiment by making a 200‐fold dilution of the

concentrated dimethyl sulfoxide solution in tris‐EDTA (TE). TE buffer

was also used for diluting DNA samples and in the assay itself.

Sample measurement on FlexStation 3 was performed following the

manufacturer's recommendations. DNA integrity was checked on

LabChip GX. The Gel‐Dye solution, DNA samples, and DNA ladder

were prepared according to the manufacturer's instructions; the

run data were compared with the electropherogram of a typical
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high‐molecular‐weight ladder and assessed for quality. A genomic

DNA (gDNA) quality score (GQS) was calculated for each sample.

The GQS is derived from the size distribution of the gDNA and it

represents the degree of degradation of a given sample, with a score

of 5 corresponding to intact gDNA and a score of 0 corresponding to

a highly degraded gDNA. Figure S1 shows the GQS distribution

across 50 samples assessed from Phase I. The distribution shows

GQS>3.5.

2.5 | Whole genome sequencing

Library construction and sequencing were performed at the Sidra

Clinical Genomics Laboratory Sequencing Facility. After extraction

of gDNA, sample integrity was controlled using the gDNA assay on

the Perkin Elmer Caliper Labchip GXII. Concentration was mea-

sured using Invitrogen Quant‐iT dsDNA Assay on the FlexStation

3. Around 150 ng of DNA were used for library construction with

the Illumina TruSeq DNA Nano kit. Each library was indexed using

the Illumina TruSeq Single Indexes. Library quality and con-

centration were assessed using the DNA 1k assay on a Perkin

Elmer GX2. Libraries were quantified using the KAPA HiFi Library

quantification kit on a Roche LightCycler 480. Flow cells were

loaded at 1 sample per lane and cluster generation was performed

on a cBot 1.0 or 2.0 using the HiSeq X Ten Reagent Kit v2.5.

Flow cells were loaded at a cluster density between 1255 and

1412 K/mm2 and sequenced on an Illumina Hiseq X instrument to

a minimum average coverage of 30x.

2.6 | Sequencing data processing methods

The Sidra Bioinformatics Core (SBC) developed a pipeline to perform

the NGS analysis for QGP and other internal projects (Figure S2). The

core also developed a framework to automate the processing of the

samples. Data are received from the clinical genomic lab (CGL) in Fastq

format. Quality control of Fastq files is performed using FastQC

(v0.11.2), to calculate quality metrics and ensure that raw reads have

good quality. Reads are then trimmed and aligned to hs37d5 reference

genome using bwa.kit (v0.7.12) and a bam file is generated. Quality

control on mapped reads (BAM files), to evaluate the coverage of each

sample, is performed using Picard (v1.117) [CollectWgsMetrics]. The

variant calling is performed following GATK 3.4 best practices: Indel

realignment and base recalibration (BQSR) is performed on the initial

bam then HaplotypeCaller run on each sample to generate an inter-

mediate genomic gVCF (gVCF). Joint Genotyping is performed using all

generated gVCF files at once. We first run GenomicsDB to combine

the different samples by regions, then on each region, we run

GenotypeGVCFs, apply SNP/Indel recalibration (VQSR), and then

merge all regions. Annotation is performed using SnpEff/SnpSift

(v4.3t). The following databases are used within SnpEff/SnpSift for the

annotation of the multisamples VCF file:

• dbSNP build 151

• ClinVar 2019‐02‐11

• dbNSFP v2.9

• GWAS catalog

• msigDBdb v5.0

All variants are kept within the VCF file. Copy Number

Variation analysis was performed using Canvas (v1.11.0) and

structural variant analysis was performed using Manta (v0.29.6)

and Delly (v0.7.8). Both analyses use bam file as input and were

performed at the single sample level. Additionally, QGP VCF file

was decomposed for multi allelic position and then normalize

using vt (v0.5). QGP VCF file was split chromosome wise and this

per chromosome VCF file was provided for further analysis as

well. All pipeline references are in the Supporting Informa-

tion Data.

To identify disease‐causing variants in HGMD, ClinVar and

OMIM, we used VCF file annotated with phenotype/disease in-

formation from these databases. To achieve that, we applied

successive filtering on the variant list using different criteria

(selecting only those located in known HGMD/OMIM gene, var-

iants with minor allele frequency (MAF) <1% in all databases,

except QGP, and the variant should be within or affecting the

coding region; missense, nonsense, frameshift, and splice‐site

variants). Among the final list, we selected those that have been

previously reported and flagged as disease‐causing “disease‐

causing mutations (DM)/DM?” in HGMD or “Pathogenic/

Likely_pathogenic” in ClinVar.

2.7 | Data quality control

QGP Phase I study included 6218 samples. We applicate down-

stream quality control on the multisample VCF using the PLINK

v2.0 tool (Chang et al., 2015). After quality control, eight samples

were removed for excess heterozygosity, one for low‐call rates

(less than 95%), 65 for gender mismatch, 87 for population out-

liers (individuals with more than four standard deviation (±4 SD)

away from the mean of the first two multidimensional scaling

component), and 10 for identical matching. After these exclusions

(N = 171), a final set of 6047 subjects was obtained (Thareja

et al., 2021).

2.8 | Statistical analyses

We compared the allele counts of QGP samples to allele counts

present in gnomAD exome samples for HGMD DM variants.

A Fisher's exact test was used to calculate variations that were

significantly overrepresented in the QGP samples (due to founder

effect) and corrected for multiple testing using the Bonferroni

method.
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2.9 | Hail genomic processing tool

Data preprocessing and analysis were performed using Hail

0.2. allele count, allele number, allele frequency, homozygous

count calculation for each subpopulation was performed

simultaneously using python scripts written using hail framework.

Quality analysis for variant calls and individual sample were

performed using variant_qc and sample_qc functions, respec-

tively. Sample level statistics for each sample was generated

using the Hail.

2.10 | QGP variant browser

QGP variant browser provides a mechanism for the researchers

to be able to search, filter, and browse the QGP genomic variants

data. This web‐based browser supports fast database query

response time for searching through more than 88 million records

with search and filter functionality on the QGP gene variants

and its attributes (e.g., allele frequency, homozygosity, etc.).

The access procedure is described in Supporting Information

Document 2.

3 | RESULTS

3.1 | Genetic variability of the Qatari population

We have identified a total of 88,191,239 variants, which includes

74,991,446 single‐nucleotide variants (SNVs) (74,040,559 bi‐allelic

SNVs) with 939,405 multiallelic sites and 13,199,792 INDELS

(8,389,562 bi‐allelic INDELS) with 2,018,185 multiallelic sites/micro-

satellites (Figures 2a‐c and S3). Importantly, twenty‐eight percent

(28%) of the total variants (24,620,313) were novel and not previously

reported in single nucleotide polymorphism Ddatabase (dbSNP) build

151 or other population databases (gnomAD, 1000 Genomes, and

Greater Middle East [GME]) (Figures 2b, S4a‐b, and S5). Each individual

genome presented a median of 3.4 million SNVs and 63,755 novel

variants. We estimated the transition to transversion (ti/tv) ratio of

2.05 and heterozygotes to nonref homozygote (Het/Hom) ratio of

1.85, which is consistent with previous WGS studies (Auton

et al., 2015). We found 23 million variants present as singletons which

are less when compared with the number of variants falling under the

MAF spectrum of <0.1% (2–12 alleles) which should be around 34

million variants (Figure 2c and Table S1). While considering the novel

variants, singletons (45%) being slightly higher than the variants that

F IGURE 2 Variants distribution and allele frequency spectrum of QGP data. Number of SNVs and INDELS present within the QGP
data. (b) Known and novel variants distribution of QGP data. (c) QGP variants classification based on minor allele frequency (MAF).
(d) Proportion of known and novel singletons within the QGP data. (e) Classification of DM variants based on pattern of inheritance.
Inheritance patterns of genes were derived from OMIM database. (f) Distribution of DM variants among individuals in QGP sub clusters.
(g) QGP variants classified as both DM and pathogenic/likely pathogenic. QGP, Qatar Genome Program
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fall in the category of 2–12 alleles (42%) and only 13% of the novel

variants exceed the MAF > 0.1%. Half of the singletons present in

QGP were already reported in dbSNP and, each individual carried a

median of 1336 singletons (Figures 2d and S6).

To evaluate the impact and scale of disease‐causing variants in

our population, we annotated the variant list with disease/phenotype

information from HGMD, ClinVar, and OMIM databases. In total, we

found 4254 disease‐causing mutations (DM), which includes 3970

SNVs and 284 INDELS (Figure S7a). These variants are located across

1672 genes that are linked to phenotypes with different modes of

inheritance (678 follow autosomal recessive [AR]; 315 autosomal

dominant [AD]; 526 both AR and AD; and 50 X‐linked inheritance)

(Figure 2e). The vast majority (97%) of these DM variants are rare

with MAF <1%, and among these 30% observed as singletons

(Figure S7b). Each individual in the QGP data set carries a median of

21 DM variants (range of 8–37) (Figures 2f and S7c), slightly less than

what have been previously reported; 25 DMs/individual in the

UK10k (Xue et al., 2012) and 29 DMs/individual in the Uganda

genome studies (Gurdasani et al., 2019). Each individual also carries in

the homozygous state a median of five DM variants (range of 1–11)

compared with three homozygous DMs/individual in the Uganda

genome and project (Auton et al., 2015; Gurdasani et al., 2019). Our

data show that approximately 900 protein‐coding genes have at least

one DM mutation and 26 genes present 15 or more DM mutations

(Figure S7d). When QGP data are classified according to ClinVar in-

formation (version February 11, 2019), we found that 1449 variants

are classified as “pathogenic” or “likely pathogenic” (Figure S7e).

Further classification considering both HGMD and ClinVar, revealed

that 1011 variants were marked as DM and “pathogenic or likely

pathogenic” (Figure 2g), with 160 variants unique to the Qatari po-

pulation. Interestingly, only a subset of 14 variants, among the 1011

variants, are shared between the QGP samples and data from GME

Variome Project (Scott et al., 2016) (Table 1). There are also 34

variants which confer protection against several diseases including

malaria, obesity, and heart disease (Table S2).

We found some rare pathogenic variants present in Qatari popula-

tion with high minor allele frequencies due to the founder effect. Some

of the examples include variant in the MPL gene [MIM: 604498]

(rs750046020, NM_005373.3:c.317C>T; NM_005373.3:p.Pro106Leu),

previously associated with thrombocytosis, occurs at a MAF of 0.9%, and

similarly, variants in the genes CBS [MIM:236200] (rs398123151,

NM_001178008.3:c.1006C>T; NM_001178008.3:p.Arg336Cys) and

KRT5 [MIM: 148040] (rs267607448, NM_000424.4:c.1411C>T;

NM_000424.4:p.Arg471Cys) associated with homocystinuria and

Epidermolysis Bullosa, respectively, are observed at a MAF of 0.7%.”

3.2 | Genetic ancestry and diversity of the Qatari
population

To capture the genetic diversity of the Qatari population and un-

derstand its relationship with the world's populations in both modern

and ancient times, we identified six major ancestries: General Arabs

(QGP_GAR, 38%), Peninsular Arabs (QGP_PAR, 17%), Arabs of

Western Eurasia and Persia (QGP_WEP, 22%), South Asian Arabs

(QGP_SAS, 1%), African Arabs (QGP_AFR, 3%), and Admixed Arabs

(QGP_ADM, 19%) (Razali et al., 2021) (Figure S8). These genetic

clusters have distinct signatures in terms of Chr‐Y haplogroups (Razali

et al., 2021) (Figure 6). Notably, the J1a2b Chr Y haplogroup, seen

previously in Southern Arabia, was observed in 1419 males making it

the largest set of individuals ever sequenced for this haplogroup. We

identified 29 novel subhaplogroups of J1a2b where the individuals

were mainly of QGP_GAR and QGP_PAR ancestries (Razali

et al., 2021) (Figure 6). In our study, the majority of QGP_PAR in-

dividuals are descendants of a tribe that originated from the historical

homeland of ancient Arab tribes in Southern Arabia. These results

suggest the richness in terms of the genomic diversity of the popu-

lation, which can represent the whole Middle Eastern region. Thus,

we use this to our advantage by creating a dedicated imputation

reference panel for the Middle Eastern population, given their lack of

representation in current publicly available imputation panels. We

were able to show superior performance compared with existing

imputation reference panels and an improved imputation rate for rare

and common allele frequencies variants (Razali et al., 2021) (Figure 7).

We next characterized the spectrum of genetic variability based

on the fine‐scale population structure observed in the Qatari popula-

tion. This analysis highlighted that 70% of the novel variants are

cluster‐specific, 5% are found in all subclusters, and the remaining 25%

are shared between one or more subclusters (Figure S9a). Similarly, we

found that about half (2139) of the DM variants are cluster‐specific

and only 68 out of 4254 DM variants were present in all subclusters

(Figure S9b). Furthermore, individuals in the QGP_AFR subcluster have

the highest heterozygotes to nonref homozygote (Het/Hom) ratio,

whereas the ratio was found to be lowest for the QGP_PAR cluster.

This reflects the high homozygosity and high consanguinity present

within the individuals of this cluster (Figure S9c). Similarly, the median

number of singletons is lower for PAR cluster compared with

other subclusters reflects the closely related individual present in this

cluster (Table 2).

Furthermore, runs of homozygosity (ROH) analysis of the QGP

done by Razali et al. (2021), identified per population ROH boundary

for short, medium, and long ROH. We observed that Peninsular Arabs

(PAR) have the lowest median for short ROH after African‐based

populations. In addition, PAR has the highest median for long ROH,

indicating recent consanguinity events. When we analyzed the re-

lationship between genes and the ROH regions, we observed that

there are more OMIM genes in ROH regions compared with non‐

OMIM genes regardless of the ROH classes. PAR was shown to have

significantly more OMIM genes compared with the other QGP and

1KG populations.

3.3 | Burden of pathogenic variation

We then focused on the burden of pathogenic variants of recessively

inherited disorders in the Qatari population. We found the most
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common recessive alleles are those linked to structural deformities

and developmental disorders, consistent with the fact that such re-

cessive traits prevail in societies where endogamy and consanguinity

are practiced (Table S3). However, some of these identified alleles are

too common to be classified as pathogenic variants (rs201818754,

rs373804633, rs199768740, and rs80358230) as their frequencies in

PAR subpopulation exceed 4%, far more than the associated disease

prevalence.

A notable example of an AR disorder is Woodhouse–Sakati

syndrome [WSS (MIM:241080)], a disease characterized by hypo-

gonadism and hair thinning that often progresses to alopecia totalis.

Of the less than 100 individuals reported globally with the disease, 30

are from Middle Eastern families (Bohlega & Alkuraya, 1993). WSS is

caused by biallelic pathogenic variants in the [DCAF17 (MIM:

612515)] (previously known as C2ORF37) gene. We identified

NM_025000.4(DCAF17):c.436delC (p.Ala147fs) as the sole patho-

genic variant of this gene in 88 individuals, in heterozygous state

(MAF = 0.007) (Supporting Information Data). Although all hetero-

zygous individuals were found to be clinically asymptomatic, the al-

ternate allele in these individuals is associated with the decreased

levels of Insulin (p value = 2.9E−02; β = −0.225; Figure S10) which

could explain diabetes mellitus being one of the characteristic clinical

phenotypes in WSS. We also found that c.436delC is enriched (fisher

exact test p = 7.57E−34; OR = 18.45) in one of the founder popula-

tions, QGP_PAR subcluster, this is consistent with a previous report

that identified NM_025000.4(DCAF17):c.436delC (rs797045038) as

a founder variant in the Qatari population (Ben‐Omran et al., 2011).

This variant has also been reported in the Kingdom of Saudi Arabia

(Alazami et al., 2008), which has a large number of tribes sharing

common and similar carrier frequency with Qatar's native population.

HMC is hosting the national molecular diagnostic laboratories of

Qatar and has identified to date 34 WSS patients and 64

heterozygous carriers. Data from both QGP and HMC laboratories

indicate that the carrier frequency for WSS in the Qatari population is

approx. 1 in 42 individuals (2.5%) with MAF of 1.25%, which is the

highest reported in the world. Remarkably, the carrier frequency of

NM_025000.4(DCAF17):c.436delC (p.Ala147fs) is 7x higher in Qatar

than in the same tribe living in neighboring Saudi Arabia and has not

yet been reported in population frequency databases, such as gno-

mAD and 1000 genomes or the 100K Genomes Project that includes

patients with rare genetic diseases (Turnbull et al., 2018).

4 | DISCUSSION

Here we characterized a broad spectrum of genetic variation in the

Qatari population, in total over 88 million variants (1.86% of novel

variants per individual genome and 24.6 M novel variants in

the whole data set). This large‐scale study allowed us to identify five

nonadmixed subgroups in QGP (n=6045) compared with three in the

previous study Fakhro et al., 2016 (n = 1005) (Fakhro et al., 2016).

We found a larger number of DM variants carried per individual

which could be explained by incomplete penetrance, or the individual

might carry them in a heterozygous state (Francioli et al., 2014; Xue

et al., 2012). We described the distribution of genetic variation across

the subclusters and found the majority of the novel variants to be

cluster‐specific. These data support records of high consanguinity

and founder effect but also identify a previously unstudied compo-

nent of the Middle Eastern population. In an earlier work, we have

performed the first genome wide association studies of a list of 45

quantitative traits in 6047 individuals from the Qatari population. We

have replicated many previously known loci and we identified 17

novel and Qatari‐specific signals across the studied traits. We have

also showed that European‐derived polygenic scores has reduced

TABLE 2 Median number of variant sites per genome

Annotation
QGP (n = 6,045,
Depth = 32.4x)

ADM (n = 1,180,
Depth = 32.2x)

AFR (n = 92,
Depth = 31.9x)

GAR (n = 2,311,
Depth = 32.2x)

PAR (n = 1,052,
Depth = 32.2x)

SAS (n = 38,
Depth = 31.9x)

WEP (n = 1, 372,
Depth = 32.2x)

SNV 3,467,270 3,596,354 3,967,082 3,466,051 3,391,850 3,492,506 3,458,604

INDELS 1,107,288 1,128,043 1,207,016 1,105,836 1,094,173 1,113,900 1,101,075

Singletons 1336 9242 17,606 2484 408 20,056 3193

Novel SNV 18,453 21,311 25,993 16,419 12,022 23,814 20,788

Novel INDELS 45,756 46,263 48,406 45,752 46,061 46,195 45,107

Synonymous 10,657 11,094 12,285 10,643 10,372 10,768 10,635

Missense 10,681 11,241 12,464 10,921 10,684 10,997 10,895

Intron 1,617,713 1,659,957 1,833,502 1,618,061 1,586,985 1,632,466 1,613,603

Intergenic 1,760,161 1,806,271 1,989,241 1,759,321 1,726,938 1,774,147 1,756,828

Conserved:
GERP>3

3751 3859 4233 3755 3667 3788 3738

Note: Novel SNV and INDELS: Variants, which are not reported in dbSNP or gnomAD or 1000G project. GERP (Genomic Evolutionary Rate Profiling)
score: Scores >3 represent highly conserved positions.

Abbreviations: ADM, Admixed; AFR, Africans; GAR, general Arabs; PAR, Peninsular Arabs; SAS, South Asians; WEP, Arabs of Western Eurasia and Persia.
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predictive performance when applied to the Middle Eastern popu-

lation of Qatar (Thareja et al., 2021).

Recently, we have reported a total of 60 pathogenic and likely

pathogenic variants in 25 ACMG genes in 141 unique individuals

(Elfatih et al., 2021) and several other efforts are currently under

way to build the catalogs of predicted loss‐of‐function variants and

Mendelian disorders mutations and to characterize the pharma-

cogenomic (Jithesh et al., 2022) and the cancer landscapes of the

Qatari population (Saad et al., in press). Furthermore, using a

combination of whole genomes and exome sequence data and

clinical reports, we developed a microarray with Qatari‐specific

pathogenic variants that could be used to rapidly, accurately and at

low cost, screen the Qatari population for pathogenic variants of

newborns, premarital couples, and patients presenting to the clinic

(Rodriguez‐Flores, 2022).

Previous genetic studies in the Middle East region have as-

sessed the genomic variations linked to health and diseases mostly

limited to whole exome sequencing on relatively small sample size

(AlSafar et al., 2019; Fattahi et al., 2019; John et al., 2018; Monies

et al., 2019; Scott et al., 2016). Our QGP data have a key

advantage over these studies since we are performing large‐scale

population sequencing using a whole genome approach. Although

our work provided various insights into the genomic of the Middle

East, we should address one limitation of our approach is that

we are including only Qatari nationals in the first phase. To

overcome this limitation, we are including long‐term residents in

our next freezes.

In conclusion, this first phase of the QGP constitutes the

largest comprehensive analysis of whole genomes representative

of tens of millions of Arabian Peninsula and Middle East in-

habitants. Such genetic information is largely lacking in global

databases (Easteal et al., 2020). Our next phases will focus on

specific diseases relevant to the Qatari population's health

burden—for example, cancer, diabetes, and rare diseases—while

accelerating the ability to use the genome sequencing data into

clinical implementation. We anticipate our data will represent a

valuable resource to advance genetic studies in the Arab and

neighboring Middle Eastern populations and will significantly

boost the current efforts to improve our understanding of global

patterns of human variations, human history, and genetic

contributions to health and diseases in diverse populations (C. N.

Rotimi & Adeyemo, 2021).
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