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a b s t r a c t

This paper presents a novel systematic approach for patient-specific classification of long-term Electroen-

cephalography (EEG). The goal is to extract the seizure sections with a high accuracy to ease the Neurol-

ogist’s burden of inspecting such long-term EEG data. We aim to achieve this using theminimum feedback

from the Neurologist. To accomplish this, we use the majority of the state-of-the-art features proposed in

this domain for evolving a collective network of binary classifiers (CNBC) usingmulti-dimensional particle

swarm optimization (MD PSO). Multiple CNBCs are then used to form a CNBC ensemble (CNBC-E), which

aggregates epileptic seizure frames from the classificationmap of each CNBC in order tomaximize the sen-

sitivity rate. Finally, a morphological filter forms the final epileptic segments while filtering out the out-

liers in the form of classification noise. The proposed system is fully generic, which does not require

any a priori information about the patient such as the list of relevant EEG channels. The results of the clas-

sification experiments, which are performed over the benchmark CHB-MIT scalp long-term EEG database

show that the proposed system can achieve all the aforementioned objectives and exhibits a significantly

superior performance compared to several other state-of-the-art methods. Using a limited training dataset

that is formed by less than 2 min of seizure and 24 min of non-seizure data on the average taken from the

early 25% section of the EEG record of each patient, the proposed system establishes an average sensitivity

rate above 89% along with an average specificity rate above 93% over the test set.

Ó 2014 Elsevier Inc. All rights reserved.

1. Introduction

Epilepsy is a chronic disease of the central nervous system that

predisposes patients to experiencing recurrent seizures which are

abnormal brain activities and stem from many diseases. Seizures

are not a disease themselves; rather a transient symptom of syn-

chronous neuronal activity in the brain [1]. In contrast to methods

such as Magnetic Resonance Imaging [2] and three-dimensional

accelerometer [2], using Electroencephalography (EEG) is a more

common method for long-term epileptic patient monitoring. EEG

is a multi-channel recording of the electrical activity generated

by neurons in the brain. The so-called scalp EEG, henceforth re-

ferred as EEG, is measured by non-invasive electrodes arrayed on

an individual’s head. One percent of population in the world is suf-

fering from epilepsy and 80% of its burden is in the developing

countries [2], and this shows the importance of seizure detection

and epilepsy diagnosis.

In recent years, several feature-based epileptic seizure detec-

tion studies using EEG signals have been done. They can be divided

into two categories: patient specific and non-patient specific meth-

ods. EEG presents significant complications and serious drawbacks

to the classification of the epileptic seizures due to the physical

properties of the EEG signal, which is extremely sensitive to the

activity of the neurons on the brain surface; however, the neurons

in the deeper sections of the brain have only limited or no effect on

the signal. The major problem in EEG that complicates the accurate

classification of epileptic activities the most is the significant vari-

ations of the EEG signals for seizure and non-seizure states across

the individuals [3,4]. The opposite is also true, i.e., the signal prop-

erties of one patient’s seizure may closely resemble the character-

istics of a normal EEG signal gathered from the same or a different

patient [4,5]. This is obviously why the limited success achieved by

those non-patient specific methods. Furthermore, EEG is suscepti-

ble to contamination of physiologic (e.g. involuntary body or organ

movements such as eye blinks, heart beats and muscle contrac-

tions) and non-physiologic noise (e.g. the sway of electrodes, the

coupling of AC harmonics of the machinery, etc.) [4]. As a result

the features, too, are contaminated by a certain level of noise,

which degrades their characterization power and the noise level

can also vary among patients and/or the EEG devices used. Even
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for a patient-specific approach it is a well-known fact that the per-

formance of EEG classification strongly depends on the character-

ization power of the features extracted from the EEG data and on

the design of the classifier (classification model or network struc-

ture and its parameters) [4]. Due to the massive size and duration

of the long-term EEG signal, the majority of the patient specific ap-

proaches were proposed on a single or few manually selected fea-

tures in order to avoid the ‘‘Curse of Dimensionality’’ phenomenon,

e.g., [4,12,15]. Unfortunately, the aforementioned variations in the

EEG signal and in the level of noise contamination over the features

make the characterization power of any feature significantly vary-

ing from patient to patient, meaning that no feature can guarantee

a certain level of detection and/or classification accuracy for all pa-

tients. Fig. 1 demonstrates this fact for two features, coefficient of

variation using wavelet Daubiches 2 and delta Short-Time Fourier

Transform (STFT), commonly used for EEG classification where

both of them have a clear discrimination of the seizure section

with the highest peak on one recording (the plots on the top; left

belonging to same patient and right to another) but fails to do so

for the other (the plots at the bottom). The latter issue, the design

of the classifier, is also critical since all patient-specific methods

usually rely on a single and static (fixed configuration) classifier,

which cannot scale well to such massive magnitude of data. Such

a priori fixations on the features and the classifier configuration

may further cause an unpredictable level of unreliability for any

patient-specific method and this is perhaps why the most of those

methods use the majority of the EEG dataset for training the clas-

sifier to achieve an acceptable level of sensitivity on seizure (onset)

detection. This is obviously cumbersome or not even feasible at all

for long-term EEG records and in fact, a true ‘‘patient-specific’’ ap-

proach should, therefore, search for the best possible feature set

and the optimal classifier configuration for the patient’s EEG signal

characteristics.

In order to address such deficiencies and drawbacks, in this pa-

per we propose a generic and robust system for patient-specific

classification of long-term EEG. The proposed system, first of all,

is not only a seizure onset detector; rather attempts to classify

the entire seizure section using an ensemble of the collective

network of binary classifiers (CNBC), each of which encapsulates

binary classifiers (BCs) that are optimized for a particular feature

set and EEG signal from an individual channel. The recently pro-

posed multi-dimensional Particle Swarm Optimization (MD-PSO)

[9] is used as the primary evolution technique and evolutionary

feed-forward Artificial Neural Networks (ANNs) [10,11] are used

as the BCs; however, any other classifier type can also be used

within the CNBC topology. Our main objective is to maximize the

detection accuracy especially for the seizure sections (i.e. sensitiv-

ity) with an acceptable level of false positives (i.e. specificity) whilst

using the minimum feedback from the Neurologist. To accomplish

this, we shall use the major state-of-the-art features proposed in

this domain and for each patient the underlying network topology

will learn to weight the features according to their ability to dis-

criminate epileptic seizures. The proposed system is fully generic,

which does not require any a priori information about the patient

such as the list of relevant EEG channels. In addition to the learning

the most discriminative features, the proposed system will also

learn the most informative EEG channels during the training phase

and favor their outputs accordingly during the classification phase.

Moreover, in order to maximize the sensitivity rate, the output of

each CNBC is then used to aggregate epileptic seizure frames and

a morphological filter forms the final epileptic segments while fil-

tering out the outliers within the non-seizure segments. At the end,

the CNBC ensemble (CNBC-E), once evolved using the Neurologist’s

labels over an earlier EEG record of a patient, can then be used to

classify automatically the long-term EEG signal of that patient.

The rest of the paper is organized as follows. Section 2 presents

the related work in this area. Section 3 outlines the EEG dataset

used in this study and provides a detailed description of the feature

extraction methodology for the proposed patient-specific EEG clas-

sification system. Section 4 briefly presents the recently proposed

evolutionary search technique, The MD PSO and its application

over the evolutionary feed-forward ANNs. In Section 5, the

proposed classifier network topology, the CNBC, and the overall

systematic approach for the EEG classification using CNBC ensem-

bles (CNBC-E) are described in detail. The classification results and

comparative performance evaluations using the benchmark
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Fig. 1. Delta STFT feature plot for 2 different EEG recordings of patient 2 (left), Wavelet feature (coefficient of variation using db2 wavelet) plots for patient 13 (right-top) and

patient 17 (right-bottom). All EEG recordings are from the benchmark CHB-MIT scalp EEG dataset [8].
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CHB-MIT scalp long-term EEG dataset [8] are given in Section 4. Fi-

nally, Section 7 concludes the paper and suggests topics for future

research.

2. Related work

Although there are several related studies in this area, most of

themare either non-patient specific techniqueswith inferior perfor-

mances or patient specific methods only applied over relatively

short EEG records and/or few patients. There are also other studies

in the literature that achieved high classification accuracies but they

either focused on a specific seizure type, or selected subset of chan-

nelswhile some of themused training and test setswhich have high

temporal correlation. Therefore, in this sectionwe shall focus on the

major and the most recent works particularly on patient-specific

long-term EEG classification. Shoeb and Guttag [12] designed a sei-

zuredetector todetect theseizureonsetusingCHB-MITScalpbench-

mark EEG dataset. They measured the energy of each 2 s epoch,

which was passed through a filterbank that spans the frequency

range, 0.5–25 Hz, as the feature. They also used Support Vector Ma-

chine (SVM) with Radial Basis Function (RBF) kernel (kernel param-

eters: c = 0.1 and C = 1) for the classification purpose. First, 20 s of

seizure segments and all non-seizure segments were used for train-

ing. In order to evaluate the sensitivity and specificity performance

of the designed detector they used the following approach. To com-

pute the sensitivity (specificity) they used NNs non-seizure (Ns sei-

zure) records and Ns ÿ 1 seizure (NNs ÿ 1 non-seizure) records of

the patient EEGwhereNNs corresponds to the number of 1-h records

without seizure events and Ns is the number of 1-h records with at

least one seizure event. They repeated the training task Ns (NNs)

times so that each seizure (non-seizure) record is tested. An average

of 96% sensitivity with the mean latency of 4.6 s was reported.

In 2012, Ravish et al. [13] used CHB-MIT Scalp benchmark EEG

dataset to detect period of the seizure events. They used 64 one-

hour records, half with and half without seizure events. The power

ratio of alpha (7.5–12.5 Hz) and delta (0.5–3.5 Hz) bands (Alpha

power/Delta power Ratio, ADR) from each 2 s window with 1 s

overlap were calculated. They only used four EEG channels: FP2–

F8, T8–P8, FP1–F7 and T7–P7. In order to determine the seizure

duration, the time duration between 10% of the peak ADR before

and after the peak is measured. Their algorithm detected all 32

non-seizure segments and only 24 (out of 32) of seizure segments

failing to detect 8 seizure segments.

Khan et al. [14] proposed a framework to detect the seizure on-

sets. For this purpose, they extracted 6 features from each 1 s

epoch: kurtosis and skewness of the raw EEG, relative energy

and variation of Daubechies 4 wavelet coefficients (A5 0–4 Hz,

D5 4–8 Hz, and D3 16–32 Hz). In order to normalize the epoch fea-

tures they formed a 25 s window as a background window and

considered 15 s between each epoch and the background window

to prevent any failure of the seizure onset detection. They applied

the algorithm only to the first 10 patients of CHB-MIT Scalp bench-

mark EEG dataset. Using a linear classifier they for each patient

they used 80% of the seizure segments for training and the other

remaining 20% for testing, and repeated this process until every

seizure segment was tested. They obtained mean latency of 3.2 s

and reported 100% sensitivity.

Shoeb et al. [15] in a recent study proposed an algorithm to de-

tect seizure terminations (offsets). Similar to their previous studies

they used 5 s sliding window with 4 s overlap. In this study, they

assumed that each seizure onset has been detected in advance.

As for the features, they extracted average energy of the periodo-

gram of each channel within 25 contiguous frequency bands

(e.g., 0–1, 1–2, . . ., 24–25 Hz) from each window. They performed

both patient-specific and patient non-specific approaches for

classification. SVM with linear and RBF kernels were used for both

modes, respectively. They used leave-one-record-out procedure for

evaluation of the end detector’s performance as in [12]. In patient

non-specific mode, the classifier was trained on feature vectors of

all records of all patients except patient i. In patient-specific detec-

tor, 132 out of 133 seizure ends were detected with an average,

absolute end detection error of 10.3 ± 5.5 s. Also in patient non-

specific detector, all seizure ends with an average absolute error

of 8.9 ± 2.3 s were recognized.

All these prior works achieved an elegant sensitivity rate on sei-

zure onset detection and thus are among the state-of-the-art tech-

niques in this area; however, as discussed briefly in Section 1, there

are serious flaws and feasibility drawbacks particularly about their

practical use to ease the manual burden of the Neurologist. Except

the work proposed in [13], they all used 80% or higher training rate

to train classifiers. This obviously is quite hard, if feasible at all, in

practice for long-term EEG recordings. Additionally, it is well

known that for a larger set of data the training rate must be kept

small in order to avoid overfitting and improve classifier’s general-

ization performance. Note that for such onset detectors the sensi-

tivity rate indicates the rate of correctly detected onsets of the

seizure segments without any indication of the seizure duration.

In addition to that for instance in [12], the 96% sensitivity rate

seems quite successful; however, 7 seizure segments (with all

frames within) were entirely missed, which might be critical for

diagnosis.

3. EEG data processing

3.1. EEG dataset

The CHB-MIT scalp long-term EEG dataset [8] was recorded

from pediatric patients (males with the ages varying between 3

and 22 and females with the ages varying between 3 and 19) with

intractable seizures at Boston Children’s Hospital. Table 1 presents

the properties of seizure records (i.e., records with at least one sei-

zure event) in this dataset. In this work, we selected 21 out of 24

patients excluding the patients 6, 12 and 16 because we failed to

read some channel data from the EEG records of those patients.

The total duration of the EEG data is 8756 min (�146 h) within

which the total duration of the seizure segments is only around

165 min (<2.8 h). So even with the seizure record selection, the sei-

zure segments cover only 1.88% of the EEG dataset, presenting a

highly imbalanced data distribution, which makes the classifica-

tion highly challenging. The sampling frequency of all recorded

signals was 256 Hz with 16-bit resolution and each frame is anno-

tated whether it is seizure or non-seizure. International 10–20

system for electrode positioning was used. The 18 processed

channels are: FP1–F7, F7–T7, T7–P7, P7–O1, FP1–F3, F3–C3,

C3–P3, P3–O1, FP2–F4, F4–C4, C4–P4, P4–O2, FP2–F8, F8–T8,

T8–P8, P8–O2, FZ–CZ and CZ–PZ. In this study, EEG signals from

all the channels are used to capture spatial distribution of EEG

waveforms on the scalp within the feature vector. The time-

resolution of each frame is 1 s.

3.2. Pre-processing and feature extraction

As the entire EEG data processing shown in Fig. 2, the EEG signal

of each channel is first band-pass filtered between 0.5 and 30 Hz

using a linear phase FIR filter with the Parks–McClellan algorithm

[17]. This frequency band has been used in most seizure detection

studies [16,18] to remove some of the well-known physiological

and electrical noise and artifacts.

Four typical feature categories in EEG signal processing are

time, frequency and time–frequency domain features and other

18 S. Kiranyaz et al. / Journal of Biomedical Informatics 49 (2014) 16–31



non-linear features. In this paper, in order to adopt a patient spe-

cific approach and to exploit the characteristics of any patient’s

EEG pattern, several features from all of these categories are ex-

tracted from each EEG channel. Once the EEG signal from a channel

is filtered, it is then partitioned into non-overlapping frames with a

1 s duration from which the features are extracted. The first group

of time domain features is morphological set used in [19], which

contains 16 distinct features including, Latency time (LAT), La-

tency/amplitude ratio (LAR), Absolute amplitude (AAMP), Absolute

latency/amplitude ratio (ALAR), Positive area (PAR), Negative area

(NAR), Total area (TAR), Absolute total area (ATAR), Total absolute

area (TAAR), Average absolute signal slope (AASS), Peak to peak

(PP), Peak to peak time window (PPT), Peak to peak slope (PPS),

Zero crossings (ZC), Zero-crossing density (ZCD) and Slope sign

alteration (SSA).

Other time domain features extracted from each frame are:

skewness, kurtosis, number of maxima and minima, root mean

square, Shannon entropy [20,21], mean, variance, coefficient of

variation [22,23], approximate entropy [21], energy and energy

of auto-covariance.

The second group of features is in the frequency domain such

as, maximum, minimummean of power spectrum density, spectral

entropy [16] and median frequency. In addition to such traditional

features we also extract 6 Mel Frequency Cepstral Coefficients

(MFCCs) [24], the first order and the second order derivatives of

MFFCs from 5 frequency bands of 1–4 Hz, 4–8 HZ, 8–12 HZ,

12–20 Hz and 20–30 Hz. In [24], MFCCs were used to detect robust

emotion in EEG signal. MFCCs are widely used in several speech

and speaker recognition systems due to the fact that they provide

a decorrelated, perceptually-oriented observation vector in the

cepstral domain. First the incoming frames are Hamming

windowed in order to enhance the harmonic nature. In addition,

Hamming window can reduce the effects of discontinuities and

edges that are introduced during the framing process. Especially

in logarithmic domain, the windowing effects can be encountered

significantly. In order to perform filtering in the time domain, the

frame is zero-padded to get the size as a power of 2 and then

FFT is applied to get into the spectral domain for plain multiplica-

tion with the filterbank. The mel (melody) scaled filterbank is a

series of filterbank, which has the central frequencies uniformly

distributed in mel-frequency (mel(f)) domain where,

melðf Þ ¼ mf ¼ 1127 log 1þ
f

700

� �

and f ¼ 700 e
mf
1127 ÿ 1

� �

: ð1Þ

Fig. 3 illustrates a sample mel-scaled filterbank in the fre-

quency domain. The number of bands is reduced for the sake of

clarity. The shape of the band filters in the filterbank can be

Hamming window or plain triangular shaped. As clearly seen in

Fig. 3 the resolution is high for low frequencies and low for higher

frequencies. Once the filtering is applied, the energy is calculated

per band and the Cepstral transform is applied on the band energy

Table 1

The properties of the CHB-MIT scalp EEG benchmark dataset [8].

Pat. ID Sex Age Total duration of seizure records (s) Total duration of seizures (s)

1 F 11 23,925 442

2 M 11 8159 172

3 F 14 25,200 402

4 M 22 38,359 378

5 F 7 18,000 558

7 F 14.5 32,537 325

8 M 3.5 18,000 919

9 F 10 34,499 276

10 M 3 50,464 447

11 F 12 10,059 806

13 F 3 28,800 535

14 F 9 25,200 169

15 M 16 50,434 1992

17 F 12 10,824 293

18 F 18 20,274 317

19 F 19 10,546 236

20 F 6 20,036 294

21 F 11 13,790 199

22 F 13 10,800 204

23 F 9 32,254 424

24 F 6 43,200 511

EEG Data Acquisition

Patient X

Feature

Extraction
Normalized

Feature 

Vectors

18-Channel EEG Signal

Channel-1

Channel-2

Channel-18

Band-Pass Filter

(0.5 – 30 Hz)

Channel-1

Channel-2

Channel-18

Normalization & 

Moving Average

Filtering

Channel-1

Channel-2

Channel-18

EEG Data Processing

Fig. 2. Pre-processing and feature extraction stages to obtain normalized feature vectors per EEG channel.
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values. Cepstral transform is a discrete cosine transform of log

filterbank amplitudes:

ci ¼ ð2=PÞ
1=2

X

P

j¼1

logmj � cos
p � i
N
ðjÿ 0:5Þ

� �

; ð2Þ

where 0 < i 6 P and P is the number of filter banks. A subset of ci is

then used as the feature vector for this frame.

The third group of features in time–frequency domain include,

relative scale energy, Shannon entropy, and coefficient of variation

for both approximation and detail coefficients in 5 levels with

Daubechies wavelets (db1, db2, db3 and db4), frequency regularity

index [26], maximum, minimum, variance, mean, number of extre-

ma and energy [27] of both approximation and detail coefficients

with db4. Also the energy of each Delta (1–4 Hz), Theta (4–7 Hz),

Alpha (7–13 Hz) and Beta (13–30 Hz) band are calculated using

Short-Time Fourier Transform (STFT). In addition, the energy of

each Delta (1–4 Hz), Theta (4–7 Hz), Alpha (7–13 Hz) and Beta

(13–30 Hz) band from the Wigner-Ville distribution of each frame

are extracted. Lyapunov exponent is also extracted as a non-linear

feature with the method used in [28]. All the extracted features

according to their types are listed in Table 2.

After extracting the features from each of the 18 channels, all

feature vectors were normalized between ÿ1 and 1 as follows:

min ¼ ðxÿ 4rðxÞÞ; max ðxÿ 4rðxÞÞ; Normalized

¼ 2
xÿmin

maxÿmin
ÿ 1 ð3Þ

where x is an individual feature value, r(x) is the standard deviation

and the bar sign indicates the average value. Moreover, in order to

smoothen the features and enhance the discrimination between the

seizure and non-seizure segments, we applied a moving average fil-

ter over the feature vectors with a 20 s window with 1 s overlap. In

Fig. 4 the energy of the Theta band (4–7 Hz) is shown before and

after using the moving average filter. It is fairly obvious that after

using the moving average filter the discrimination between the sei-

zure and non-seizure segment is enhanced and the noise level in the

non-seizure segment is significantly reduced. Note that in this

example the seizure occurs between 2996 and 3036 s.

4. Evolutionary neural networks

As mentioned earlier, evolutionary ANNs are used as binary

classifiers (BC) within the CNBC topology that is primarily used

for the classification of EEG data from each individual patient in

the database. In this section, the MD PSO technique [9–11], which

is used for evolving ANNs, will briefly be introduced and we shall

present its application for evolving the feed-forward ANNs next.

4.1. Multi-dimensional particle swarm optimization

The Particle Swarm Optimization (PSO) was introduced by Ken-

nedy and Eberhart [29] in 1995 as a population based stochastic

search and optimization process. In a PSO process, a swarm of par-

ticles, each of which represents a potential solution to an optimiza-

tion problem, navigate through the search space. The particles are

initially distributed randomly over the search space and the goal is

to converge to the global optimum of a function or a system. Each

particle keeps track of its position in the search space and its best

solution so far achieved. This is the personal best value (the

so-called pbest in [29]) and the PSO process also keeps track of

the global best solution so far achieved by the swarm with its par-

ticle index (the so called gbest in [29]). So during their journey with

discrete time iterations, the velocity of each particle in the next

iteration is computed by the best position of the swarm (position

of the particle gbest as the social component), the best personal

position of the particle (pbest as the cognitive component), and its

current velocity (the memory term). Both social and cognitive com-

ponents contribute randomly to the position of the particle in the

next iteration.

As the evolutionary method, we shall use the multi-dimen-

sional (MD) extension of the basic PSO (bPSO) method, the MD

PSO, proposed in [11]. Instead of operating at a fixed dimension

N, the MD PSO algorithm is designed to seek both positional and

dimensional optima within a dimension range, fDmin; Dmaxg. In or-

der to accomplish this, each particle has two sets of components,

each of which has been subjected to two independent and consec-

utive processes. The first one is a regular positional PSO, i.e. the tra-

ditional velocity updates and due positional shifts in N dimensional

search (solution) space. The second one is a dimensional PSO,

which allows the particle to navigate through dimensions. Accord-

ingly, each particle keeps track of its last position, velocity and per-

sonal best position (pbest) in a particular dimension so that when it

re-visits the same dimension at a later time, it can perform its reg-

ular ‘‘positional’’ update using this information. The dimensional

PSO process of each particle may then move the particle to another

dimension where it will remember its positional status and will be

updated within the positional PSO process at this dimension, and

so on. The swarm, on the other hand, keeps track of the gbest par-

ticle in each dimension, indicating the best (global) position so far

achieved. Similarly, the dimensional PSO process of each particle

uses its personal best dimension in which the personal best fitness

1

freq.

1
m

jm Pm Energy in
each band

Fig. 3. The derivation of mel-scaled filterbank amplitudes.

Table 2

List of extracted features.

Morphological LAT, LAR, AAMP, ALAR, PAR, NAR, TAR, ATAR, TAAR, AASS, PP, PPT, PPS, ZC, ZCD, SSA

Time Skewness, Kurtosis, No. maxima and minima, mean, variance, standard deviation, coefficient of variation, RMS, Shannon entropy, approximate

entropy, energy; standard variation, variance and energy of auto-covariance

Frequency Maximum, minimum, and mean of power spectrum, spectral entropy, median frequency

Time–

frequency

Relative scale energy, Shannon entropy, coefficient of variation of 5 approximations and 5 details coefficients with db1, db2, db3, and db4, frequency

regularity index, maximum, minimum, variance, mean, standard deviation, No. of exterma and energy of 5 approximations and 5 details using db4,

energy of STFT in 4 frequency bands of delta (1–4 Hz), theta (4–7), alpha (7–13 Hz), and beta (13–30 Hz), energy in Winger-Ville distribution in 3

frequency bands of delta (1–4 Hz), theta (4–7), alpha (7–13 Hz), and beta (13–30 Hz)

Non-linear Lyapunov exponent

MFCC MFCC, first and second order derivative of MFCC coefficients in 5 frequency bands of 1–4 Hz, 4–8 Hz, 8–12 Hz, 12–20 Hz
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score has so far been achieved. Finally, the swarm keeps track of

the global best dimension, dbest, among all the personal best

dimensions. The gbest particle in the dbest dimension represents

the optimum solution and dimension, respectively.

In a MD PSO process at time (iteration) t, each particle a in the

swarm with S particles, n = {x1, . . ., xa, . . ., xS}, is represented by the

following characteristics:

xx
xdaðtÞ

a;j ðtÞ: jth component (dimension) of the position of particle

a, in dimension xda(t).

vx
xdaðtÞ

a;j ðtÞ: jth component (dimension) of the velocity of particle

a, in dimension xda(t).

xy
xdaðtÞ

a;j ðtÞ: jth component (dimension) of the personal best posi-

tion of particle a, in dimension xda(t).

gbest(d): Global best particle index in dimension d.

xŷdj ðtÞ: jth component (dimension) of the global best position of

swarm, in dimension d.

xda(t): Dimension component of particle a.

vda(t): Velocity component of dimension of particle a.

x~daðtÞ: Personal best dimension component of particle a.

Let f denote the fitness function that is to be optimized within a

certain dimension range, fDmin; Dmaxg. Without loss of generality

assume that the objective is to find the minimum of f at the opti-

mum dimension within a multi-dimensional search space. Assume

that the particle a visits (back) the same dimension after T itera-

tions (i.e. xda(t) = xda(t + T) ), then the personal best position can

be updated in iteration t + T as follows,

xy
xdaðtþTÞ

a;j ðtþTÞ¼
xy

xdaðtÞ

a;j ðtÞ if f xx
xdaðtþTÞ
a ðtþTÞ

� �

> f xy
xdaðtÞ
a ðtÞ

� �

xx
xdaðtþTÞ

a;j ðtþTÞ else

8

<

:

9

=

;

j¼1;2; . . . ;xdaðtþTÞ

ð4Þ

Furthermore, the personal best dimension of particle a can be

updated in iteration t + 1 as follows,

x~daðt þ 1Þ ¼
x~daðtÞ if f xx

xdaðtþ1Þ
a ðt þ 1Þ

� �

> f xy
x~daðtÞ
a ðtÞ

� �

xdaðt þ 1Þ else

( )

ð5Þ

Fig. 5 shows sample MD PSO and bPSO particles denoted as a.

Particle a in bPSO particle is at a (fixed) dimension, N = 5, and

contains only positional components; whereas in MD PSO particle

a contains both positional and dimensional components,

respectively. In the figure the dimension range for MD PSO is given

by fDmin; Dmaxg ¼ f2; 9g, therefore the particle contains 9 sets of

positional components. In this example the particle a currently

resides at dimension 2 (xda(t) = 2); whereas its personal best dimen-

sion is 3 (x~daðtÞ ¼ 3). Therefore, at time t a positional PSO update is

first performed over the positional elements, xx2aðtÞ; and then the
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Fig. 4. Before (top) and after (bottom) using the moving average filter. The seizure segment is shown by red color. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 5. Sample MD PSO (right) vs. bPSO (left) particle structures. For MD PSO

fDmin ¼ 2; Dmax ¼ 9g and at time t, xda(t) = 2 and x~daðtÞ ¼ 3.
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particle may move to another dimension with respect to the

dimensional PSO. Recall that each positional element,

xx2a;jðtÞ; j 2 f0;1g, represents a potential solution in the data space

of the problem. Further details and the pseudo-code of the MD

PSO can be found in [9].

4.2. MD PSO for evolving MLPs

As a stochastic search process in multi-dimensional search

space, MD PSO seeks (near-) optimal networks in an architecture

space (AS), which can be defined over any type of ANNs with any

properties. In this work, the focus is particularly drawn on auto-

matic design of the multilayer perceptrons (MLPs). All network

configurations in the AS are enumerated into a hash table with a

proper hash function, which ranks the networks with respect to

their complexity, i.e. associates higher hash indices to networks

with higher complexity. MD PSO can then use each index as a

unique dimension of the search space where particles can make

inter-dimensional navigations to seek an optimum dimension

(dbest) and the optimum solution on that dimension, xŷdbest . The

former corresponds to the optimal architecture and the latter

encapsulates the optimum network parameters (connections,

weights and biases). Suppose for the sake of simplicity, a range is

defined for the minimum and maximum number of layers,

{Lmin, Lmax} and number of neurons for the hidden layer l,

fNl
min;N

l
maxg. The sizes of both input and output layers are

determined by the problem and hence fixed. The AS can then be

defined only by two range arrays, Rmin ¼ fNi;N
1
min; . . . ;N

Lmaxÿ1
min ;Nog

and Rmax ¼ fNi;N
1
max; . . . ;N

Lmaxÿ1
max ;Nog, one for minimum and the

other for the maximum number of neurons allowed for each layer

of a MLP. The size of both arrays is naturally Lmax + 1 where the cor-

responding entries define the range of the lth hidden layer for all

those MLPs, which can have an lth hidden layer. The size of the in-

put and output layers, {Ni, No}, is fixed and is the same for all con-

figurations in the AS. Lmin P 1 and Lmax can be set to any value

meaningful for the problem encountered. The hash function then

enumerates all potential MLP configurations into hash indices,

starting from the simplest MLP with Lmin ÿ 1 hidden layers, each

of which has minimum number of neurons given by Rmin, to the

most complex network with Lmax ÿ 1 hidden layers, each of which

has a maximum number of neurons given by Rmax.

Let Nl
h be the number of hidden neurons in layer l of a MLP with

input and output layer sizes Ni and No, respectively. The input neu-

rons are merely fan-out units since no processing takes place. Let F

be the activation function applied over the weighted inputs plus a

bias, as follows:

yp;lk ¼ Fðsp;lk Þ where sp;lk ¼
X

j

wlÿ1
jk yp;lÿ1j þ hlk ð6Þ

and where yp;lk is the output of the kth neuron of the lth hidden/out-

put layer when the pattern p is fed, wlÿ1
jk is the weight from the jth

neuron in layer l ÿ 1 to the kth neuron in layer l, and hlk is the bias

value of the kth neuron of the lth hidden/output layer. The training

Mean Squared Error, MSE, is formulated as follows:

MSE ¼
1

2PNo

X

p2T

X

No

k¼1

ðtpk ÿ yp;ok Þ
2
; ð7Þ

where tpk is the target (desired) output and yp;ok is the actual output

from the kth neuron in the output layer, l = o, for pattern p in the

training dataset T with size P, respectively. Suppose that particle

a, has the positional component formed as, xx
xdaðtÞ
a ðtÞ ¼ W

xdaðtÞ

ffw0
jkg; fw

1
jkg; fh

1
kg; fw

2
jkg; fh

2
kg; . . . ; fw

oÿ1
jk g; fh

oÿ1
k g; fh

o
kgg at a time t,

where fwl
jkg and fhlkg represent the sets of weights and biases of

the layer l of the MLP configuration,WxdaðtÞ. Note that the input layer

(l = 0) contains only weights whereas the output layer (l = o) has

only biases. By means of such a direct encoding scheme, particle a

represents all potential network parameters of the MLP architecture

at the dimension (hash index) xda(t). As mentioned earlier, the

dimension range, fDmin; Dmaxg, where MD PSO particles can make

inter-dimensional jumps, is determined by the AS defined. Apart

from the regular limits such as (positional) velocity range,

fVmin; Vmaxg; dimensional velocity range, fVDmin; VDmaxg, the data

space can also be limited with some practical range, i.e.

Xmin < xx
xdaðtÞ
a ðtÞ < Xmax. SettingMSE in Eq. (7) as the fitness function

enables MD PSO to perform evolutions of both network parameters

and architectures within its native process. Further details and an

extensive set of experiments demonstrating the optimality of the

networks evolved with respect to several benchmark problems

can be found in [10,11].

5. EEG classification system

This section describes in detail the proposed EEG classification

system starting from the core classifier topology: the Collective

Network of (Evolutionary) Binary Classifiers (CNBC), which uses

Neurologist’s labels as the Ground Truth Data (GTD) in the training

dataset to configure its internal structure and to evolve its binary

classifiers (BCs) individually. Before going into details of the topo-

logical characteristics and the evolutionary process of the CNBC, a

general overview of the proposed classification system will first be

introduced in the next sub-section.

5.1. The system overview

As shown in Fig. 6, the long-term EEG records are divided into

individual channels and into 1 s time frames and then as de-

scribed in detail in Section 3, EEG data processing in a sequential

order of pre-processing, feature extraction and post-processing

operations are applied to each frame. From each EEG channel, nor-

malized and smoothed features in the encapsulating feature

vectors (FVs) of each time frame are then fed to the CNBC ensem-

ble (CNBC-E) that has already been created and evolved specially

for the patient. Note that as a ‘‘divide-and-conquer’’ paradigm, the

proposed system for long-term EEG classification divides the

problem into many ‘‘manageable’’ parts and the division is per-

formed over EEG channels, features, temporal frames and binary

classifiers. Such a broad division is managed mainly within each

CNBC, which will be covered in the next section. Accordingly,

the CNBC-E strives for minimizing the misclassifications of the

epileptic seizure frames. In other words, the purpose of the ensem-

ble structure is to capture and aggregate the ‘‘seizure’’ decisions

from each CNBC, i.e., any frame is initially classified as ‘‘seizure’’

if at least one CNBC classifies it as such and thus epileptic seizures

are aggregated and then morphologically filtered as the final post-

processing step. Each CNBC is individually (and independently)

evolved and in order not to miss any seizure frame out, achieving

divergent decision boundaries among them is crucial. Therefore, it

is of utmost importance to perform evolutionary search process

based on stochastic optimization technique, such as MD PSO;

otherwise, it is obvious that static classifiers such as SVMs or Ran-

dom Forest (RF) cannot provide such a divergence since identical

decision boundaries will result due to their deterministic training

methods.

Morphological filtering (MF) is a process to filter out noisy

outliers in seizure and non-seizure segments. For instance one or

few seizure frames in a non-seizure segment (or vice versa) are

obviously the classification noise and hence should be removed.

In order to accomplish this we develop a fuzzy rule-based morpho-

logical filtering technique, which operates according to the

morphological structure of both segment types such as continuity,

neighborhood similarity (except the boundaries) and closure
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(seizure segments have a finite duration). So after the last block

shown in Fig. 6, the aim is to produce continuous and noise free

segments for both types. In order to accomplish this, a consecutive

application of morphological filtering is performed after the epilep-

tic seizure aggregation (ESA) over the EEG classification array of

each CNBC output. In order to address global properties such as

continuity and neighborhood similarity, we design MF in a top-down

approach, which operates on the analysis windows rather than the

frames. Each analysis windowwill then be classified as non-seizure

(N), seizure, (S) or fuzzy (F) according to its seizure frame count.

Before going into details of the ESA and MF, we shall first define

the terminology used for the classification of the EEG record of

the patient p with duration of Tp seconds by a CNBC-E with NCNBC

number of CNBCs, as follows:

WS: window duration in seconds,

WN ¼ bTpWSc : number of analysis windows in the EEG record.

wc
CNBCðiÞ: the classification of the ith frame, i e [1, Tp], as either N

or S by the cth CNBC, c e [1, NCNBC].

w(i): the final classification of the ith frame as either N or S after

ESA and MF operations.

W(j): the type of the jth analysis window, 8j 2 ½1; WN�, as the

non-seizure (N), seizure, (S) or fuzzy (F),

Nj
W : number of frames in w classified as N in the jth analysis

window.

SjW : number of frames w classified as S in the jth analysis

window,

DW: number of analysis windows for verifying the continuity

and neighborhood similarity.

Once the cth CNBC is evolved and then used to classify the EEG

record, the resultant classification array, wc
CNBCðiÞ;8i 2 ½1; Tp�, can

then be used to update the final classification array, wðiÞ;8i 2 ½1; Tp�.

Accordingly, the pseudo-code of the consecutive application of

ESA and MF operations after the cth CNBC classification is given

in Table 3. The only input variable is c where the consecutive oper-

ations of ESA + MF are performed for 8c 2 ½1; NCNBC �. The input

parameters are the analysis window properties, WS, WN, and DW.

The first loop between steps 1 and 2 aggregates the epileptic sei-

zure segments within wc
CNBCðiÞ tow(i). The rest of the steps 3–6 then

perform the MF operation. The loop between steps 3 and 4 divides

the EEG record into analysis windows, W(j) 8j 2 ½1; WN�; and

assigns their class types as either N, S or F. The windows with no

seizure frames (SjW ¼ 0) are classified as the non-seizure (N) type

whereas the others are assigned as either fuzzy (F) or seizure (S).

Note that these are only the classification of the analysis windows,

not the frames of the record, which will then be classified by

verifying these analysis windows for continuity and neighborhood

similarity. This is basically performed in the loop between the steps

5 and 6, over the classified analysis windows, W(j). The step 5.1

verifies whether or not a window W(j)-regardless of its initial clas-

sification- has an S type window within the DW neighborhood. If

not, according to the neighborhood similarity rule, it cannot be an

S or F type window even though if it was initially classified as such

and thus all S frames within – if exist – should be filtered out real-

izing that they are the classification noise encountered within

wc
CNBC . In this case they are all assigned as type N. On the other

hand, the step 5.2 verifies whether or not the window W(j)-also

regardless from its initial classification- has both S type windows

within theDW neighborhood. If so, according to the continuity rule,

the windowW(j) should be an S type window even though if it was

not initially classified as such and thus all N frames within –if ex-

ist- should be filtered out realizing that they are, too, the classifica-

tion noise. The fuzzy (F type) windows are not conclusive at this

stage due to the presence of seizure frames that are in the minority

within the window; however, with the integration of other CNBC

classification results, seizure frames can be aggregated via ESA

operations and hence this F window can be transformed to an S

window. Note further that the MF operation basically strives for

detecting and thus forming continuous seizure segments and

therefore, any S or F type window is kept intact except whenever

it only has N type neighbors. We empirically set WS = 9 s so that

the minimum seizure duration is required to be 5 s in order to as-

sign an analysis window as S type. Moreover, we setDW = 2 so that

Table 3

Pseudo-code of epileptic seizure aggregation (ESA) and morphological filtering (MF).

ESA + MF (c, WS,WN, DW).

1. For "i e [1,Tp] do:

1.1. If (wc
CNBCðiÞ ¼ S) then w(i) S

2. End For.

3. For "j e [1,WN] do:

3.1. Compute Nj
W and SjW where Nj

W þ SjW ¼WS

3.2. Assign WðjÞas : WðjÞ ¼

N if SjW ¼ 0

S if SjW > Nj
W

F if SjW 6 Nj
W and SjW–0

8

>

<

>

:

9

>

=

>

;

4. End For.

5. For 8j 2 ½DW þ 1; WN ÿ DW� do:

5.1. If (WðkÞ–S 8k 2 ½jÿ DW; jþ DW� ÿ fjgÞ

5.1.1. Then wðiÞ  N 8i 2 ½ðjÿ 1ÞWS þ 1; jWS�

5.2. Else if
9k1;k2 :Wðk1Þ¼S&Wðk2Þ¼S8k12½jÿDW; jÿ1�&8k22½jþ1; jþDW�

5.2.1. Then wðiÞ  S 8i 2 ½ðjÿ 1ÞWS þ 1; jWS�

End For.

Fig. 6. The illustration of the proposed EEG classification system.
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a minimum two neighbor windows are required for the verification

of analysis windows for continuity and neighborhood similarity. This

allows a sufficient range of 2 � 9 = 18 s that can be aggregated by

the later ESA operations to fill seizure segments within the range.

Therefore, if there is a seizure section with one or more S type win-

dows already detected, the undetected N or F type windows can

thus be filled within this range.

A sequence of ESA and MF operations is shown in Fig. 7 over the

classification arrays of the first two CNBCs of the CNBC-E for the

Patient 5. The classification map on the top is the ground-truth

labeling by the Neurologist and note that the map is shown in a

2D array as a B/W image where black and white pixels represent

the N and S type frames (each with duration of 1 s), respectively.

Each row of the image represents 4 min of the EEG record and

therefore, the width of the image is 4 � 60 = 240 pixels and the to-

tal duration of the EEG recording is 4 h, therefore, the height of the

images are all 4 � 60/4 = 60 pixels. As the first CNBC, the classifica-

tion map of the CNBC-1 is subject to only MF operation, which re-

moves some noisy (isolated) N type frames and merged some S

type frames. The resultant classification map shown in the left-bot-

tom side of the figure is then epileptic seizure aggregated (ESA)

using the classification map of the CNBC-2, and as a result some

of the missing seizure frames are now aggregated; however, some

noisy ones are too emerged as clearly seen in the classification map

on right-top. The following MF operation then successfully filters

those noisy S frames as shown in the right-bottom and then the

ESA operation is, once again, performed using the classification

map of CNBC-2, and so on.

5.2. Collective network of binary classifiers

5.2.1. The topology

The long term EEG recordings are inevitably the source of mas-

sive amount of data in high dimensions due to multiple channels,

and several features extracted. Therefore, the main motivation be-

hind the CNBC topology is to divide this massive problem into sev-

eral ‘‘manageable’’ parts each of which can be ‘‘learned’’ by a

simple classifier optimized for this purpose by the evolutionary

technique in order to maximize the performance. This is indeed a

‘‘Divide and Conquer’’ type approach which uses as many classifi-

ers as necessary, so as to divide such a large-scale learning problem

into many NBC units along with the binary classifiers (BCs) within,

and thus prevent the need of using complex classifiers as the learn-

ing (both training and evolution) performance degrades signifi-

cantly as the complexity rises due to the well-known curse of

dimensionality phenomenon. Recall from the earlier discussion that

the proposed EEG classification framework based on CNBC is fully

generic, which neither requires any a priori information about the

patient such as the list of relevant EEG channels, nor manually se-

lects the most discriminative features among the large set. There-

fore, it is a crucial design objective to select or more accurately to

‘‘learn’’ the relevancy of each EEG channel and each feature so as to

‘‘weight’’ them accordingly during the classification process.

As the CNBC topology shown in Fig. 8, each NBC corresponds to

a unique EEG channel and strives to learn and classify the signal

using the FVs only from that channel. The output of each NBCs will

then be learned and weighted accordingly by a dedicated classifier,

the ‘‘master fuser BC’’, which will make the final classification deci-

sion of each EEG frame. Note that this is the fusion of the individual

decisions by each NBC unit, which divides the problem per channel.

A similar division–fusion paradigm also exists; this time for the fea-

tures within the NBCs. Each NBC contains a set of evolutionary bin-

ary classifiers (BCs) in the input layer where each BC performs

binary classification over an individual FV. In this ‘‘feature divi-

sion’’ scheme, each FV of a particular feature extraction method

is only fed to its corresponding BC in each NBC. Furthermore, such

a flexible scheme allows the number of BCs varies, and whenever a

new FV is extracted by a new method, its corresponding BC will be

created, evolved and inserted into each NBC, yet keeping other BCs

intact. In this way scalabilitywith respect to varying number of fea-

tures is achieved and the overall system can adapt to the change

without requiring re-forming and re-evolving from scratch. On

the fusion side, each NBC has a ‘‘fuser BC’’ in its output layer, which

fuses the binary outputs of all BCs in the input layer and generates a

single binary output, indicating the classification decision of each

EEG frame according to the NBC’s corresponding EEG channel.

As shown in Fig. 8, 1-of-n encoding scheme is applied in all BCs,

therefore, the output layer size of all binary classifiers is always 2

Fig. 7. ESA and MF operations over the two CNBCs’ classification arrays of the EEG record for the patient 5 in the benchmark CHB-MIT scalp EEG dataset.
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Fig. 9. The illustration of the evolution process of a CNBC.

Fig. 8. Topology of the proposed CNBC framework for 18 EEG channels and N FVs.
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(i.e. n = 2). Let CVc,1 and CVc,2 be the first and second output of the

cth (EEG channel’s) fuser BC’s class vector (CV). For each frame, its

FVs of each channel are fed into the corresponding NBC in the

CNBC. Each FV drives through (via forward propagation) its corre-

sponding BC in the input layer of the NBC. The outputs of these

binary classifiers are then fed to the fuser binary classifier of each

NBC to produce the combined set of CVs in 36-D, i.e.,

fCV c;ig; 8c 2 ½1;18�; i 2 f1;2g, that are finally fed into the master

fuser BC as the input. Its output is the CV indicating the classifica-

tion of the input EEG frame. For the class selection over the CVs, 1-

of-n encoding scheme is performed by comparing the individual

outputs, e.g. say a seizure (S type) classification if CVc,2 > CVc,1,

and vice versa for the N type.

As a result such a division-fusion scheme implemented within

the CNBC topology voids the need of selecting manually or having

the a priori knowledge of the relevant channels and features in or-

der to avoid the curse of dimensionality phenomenon. Besides this,

another major benefit of this approach is that the configurations in

the AS can be kept as compact as possible avoiding unfeasibly large

storage and computation time requirements. Therefore, evolving

the CNBC may be further reduces since all the binary classifiers

can be individually evolved by a separate process. This basically

leads to the possibility of parallel processing that can be imple-

mented on a Grid or Cloud computation environment [30]. We

shall cover the details of the CNBC evolution next.

5.3. Evolution of the CNBC

The evolution of the entire CNBC-E is performed for each CNBC

and all binary classifiers (BCs) in a CNBC are evolved using the

same set of Neurologist’s labeling of an early EEG record of that pa-

tient, which constitutes the training dataset. As illustrated in Fig. 9,

using the Feature Vectors (FVs) extracted from each EEG channel

along with the target Class Vectors (CVs) of the training dataset,

the evolution process of each BC in a NBC is performed within

the AS in order to find the best BC configuration with respect to

a given criterion (e.g. training/validation MSE or CE). In 1-of-n

encoding scheme, the target CVs for N and S type frames are set

as, CVc,1 = {1, ÿ1} and CVc,1 = { ÿ1, 1}, respectively that are set

according to the labels of the Neurologist of each frame.
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Fig. 10. Illustration of the three-phase evolution process for CNBC.
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The evolution of the entire CNBC-E is performed for each CNBC

individually in three consecutive phases, as illustrated in Fig. 10. In

Phase 1, see top of Fig. 10, BCs in the first level of each NBC are

evolved using the FVs extracted from the frames of its associated

channel and a target CVs of the training dataset according to the

frame type (N or S). Once the evolution process in Phase 1 is com-

pleted for all BCs in the input layer, the best BC configurations

evolved by the MD PSO process are used to forward propagate all

FVs of all the EEG frames in the training dataset to produce the

combined set of CVs that is then fed into the fuser BC as an inter-

mediate FV. In Phase 2, as shown in Fig. 10 in the middle, the fuser

BCs of each NBC are evolved using these intermediate FVs and the

same target CVs of the training dataset. As in Phase 1, the best con-

figurations evolved will then be used as the fuser BCs. Note that in

both Phase 1 and 2, the master fuser BC is excluded and hence not

illustrated in the block diagrams (top and middle) of Fig. 10. When

both phases are completed, all NBCs are then ready (with the best

BCs and fuser BCs) and the FVs can now be forward propagated

through them to produce the combined set of CVs in 36-D that

can be fed to the master fuser BC. In Phase 3 the master fuser BC

is finally evolved in a similar manner, using the combined CVs as

the intermediate FVs and the same target CVs of the training

dataset.

In both Phases 2 and 3, apart from the difference in the gener-

ation of the FVs, the evolutionary method of the fuser BCs is same

as any other BC has in the input layer. As discussed earlier, in phase

2, the fuser binary classifier learns the significance of each individ-

ual binary classifier (and its feature) over that particular channel.

This can be viewed as a crucial way of applying a weighted feature

selection scheme as some FVs may be quite discriminative for some

patients and channels whereas others may not, and the fuser, if

properly evolved, can ‘‘weight’’ each binary classifier (with its

FV), accordingly. In this way the usage of each feature (and its

BC) shall optimally be ‘‘fused’’ according to their discrimination

power of each class. Similarly, the master fuser BC learns the signif-

icance (or discrimination capability) of each EEG channel and

weights them accordingly while making the classification decision

over these channels. For instance NBC of an associated channel,

which generates irrelevant (or indiscriminant) outputs (CVs) is

most likely discarded or weighted less among others by the master

fuser BC, and vice versa for a NBC which can discriminate well be-

tween N and S type frames. Finally, note that each binary classifier

in the first layer shall in time learn the significance of individual

feature components of the corresponding FV for the discrimination

of its class. In short the CNBC, if properly evolved, shall learn the

significance of each EEG channel and the individual features with

the best classifiers dedicated for the task.

As it is evident from Table 1, the amount of seizure and

non-seizure frames is highly unbalanced and such an unbalanced

numbers of positive (seizure) and negative (non-seizure) samples

may cause a bias problem during the evolution process, i.e. for

every positive sample; there will be a large number of negative

samples which may bias the classifier (class imbalance problem).

In order to prevent this, a negative sample selection is performed
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Fig. 11. The plots of sensitivity (Sen.) and specificity (Spe.) of the original, ESA and ESA + MF applied versus CNBC number obtained by the CNBC-E with 8 CNBCs for the 4

patients.

Table 4

The architecture space (AS) used for MLPs.

Dim. Conf. Dim. Conf. Dim. Conf.

0 Ni � 2 6 Ni � 13 � 2 12 Ni � 19 � 2

1 Ni � 8 � 2 7 Ni � 14 � 2 13 Ni � 20 � 2

2 Ni � 9 � 2 8 Ni � 15 � 2 14 Ni � 21 � 2

3 Ni � 10 � 2 9 Ni � 16 � 2 15 Ni � 22 � 2

4 Ni � 11 � 2 10 Ni � 17 � 2 16 Ni � 23 � 2

5 Ni � 12 � 2 11 Ni � 18 � 2 17 Ni � 24 � 2
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in such a way that for each positive sample, number of the negative

samples (per positive sample) will be limited according to a pre-

determined Positive-to-Negative Ratio (PNR). Selection of the neg-

ative samples is performed with respect to the closest proximity to

the positive sample so that the classifier can be evolved by discrim-

inating those negative samples (from the positive sample) that

have the highest potential for the false-positive. Therefore, if prop-

erly evolved, the classifier can draw the ‘‘best possible’’ boundary

between the positive and (PNR number of) negative samples,

which shall in turn improve the classification accuracy. Besides

the accuracy improvement, since the number of negative samples

(non-seizure frames) is significantly reduced, this will also speed

up the evolution process and reduce the computational cost.

6. Experimental results

In this section we shall present the overall results obtained from

the EEG classification experiments over the CHB-MIT Scalp

benchmark long-term EEG dataset. First we randomly select four

patients and use a total of 21 h of EEG records to demonstrate

the sensitivity and specificity plots obtained from the proposed

CNBC-E. Then we shall perform comparative evaluations against

the state-of-the-art classification methods in this field, all of which

use the same features and training dataset. Finally, computational

complexity analysis will be performed for the evolution of the en-

tire CNBC-E.

Recall that our main objective is to maximize sensitivity with an

acceptable level of specificity using the minimum Neurologist la-

bels from the early EEG records. To mimic this objective, in all

experiments in this section, we set the training rate as 25%, which

means that the proposed system (and all the competing

techniques) is trained with the early sections of the long-term

EEG records using only the 25% of the seizure and non-seizure

frames and tested with the remaining (75%) of the patient’s record.

Recall that the total duration of the seizure sections is only around

165 min, which makes on the average of �7.9 min per patient.

Therefore, we, on the average, used less than 2 min of seizure data

per patient, and with a PNR setting as 12, we practically used

Table 5

The sensitivity rates (%) of the proposed system and 8 competing methods using the best SVM classifier over the original features and features selected by 7 different techniques.

Patients Proposed Original CMIM FCBF MIFS MIM MRMR JMI DISR

Patient-1 94.66 88.13 87.54 70.62 63.5 80.71 76.56 91.4 89.61

Patient-2 98.48 89.39 90.91 84.09 85.61 98.48 88.64 97.73 96.21

Patient-3 97.07 87.3 91.53 80.78 82.08 90.88 81.43 93.16 90.23

Patient-4 71.78 34.84 40.42 28.92 48.43 94.77 37.28 75.96 49.83

Patient-5 96.93 76.83 80.14 78.72 75.18 80.38 80.61 80.85 81.09

Patient-7 90.24 68.7 64.63 49.19 54.07 2.80 59.35 58.53 60.57

Patient-8 95.67 77.49 85.43 63.92 64.21 67.67 72.58 83.55 84.56

Patient-9 100 93.33 92.86 69.05 89.05 99.52 93.33 100 93.33

Patient-10 92.38 94.13 92.96 93.84 91.5 91.5 93.55 93.84 93.84

Patient-11 95.88 62.11 49.26 41.85 56.67 57.83 40.03 63.76 51.89

Patient-13 86.13 50.85 43.55 56.45 36.74 53.04 43.55 52.8 53.28

Patient-14 81.95 75.94 75.19 60.15 66.17 76.69 74.44 75.19 74.44

Patient-15 86.81 80.12 76.14 66.87 75.29 81.97 71.57 80.78 80.58

Patient-17 63.51 2.64 2.31 4.94 45.3 2.14 11.04 3.13 21.75

Patient-18 81.07 3.05 63.37 24.69 20.98 21.4 27.16 76.13 85.6

Patient-19 98.89 68.33 64.44 58.33 68.89 76.11 65.56 75.55 58.33

Patient-20 93.01 63.75 72.93 69.43 61.57 75.98 69 75.11 72.49

Patient-21 95.42 75.16 76.47 65.36 33.33 64.05 83.01 60.78 43.14

Patient-22 100 87.18 94.23 87.82 65.38 93.59 91.67 95.51 93.59

Patient-23 67.9 2.69 1.60 13.89 18.52 36.73 15.43 45.37 19.44

Patient-24 83.08 99.7 99.79 99.97 99.95 99.24 99.92 99.47 99.5

Average 89.01 68.49 69.58 61.36 64.43 70.55 65.21 76.14 72.77

Table 6

The specificity rates (%) of the proposed system and 8 competing methods using the best SVM classifier over the original features and features selected by 7 different techniques.

Patients Proposed Original CMIM FCBF MIFS MIM MRMR JMI DISR

Patient-1 99.72 99.92 99.92 99.90 99.87 99.77 99.89 99.90 99.80

Patient-2 80.17 98.21 98.18 98.03 98.10 96.41 97.95 97.09 96.41

Patient-3 92.74 96.98 95.13 97.55 97.31 94.89 97.06 93.71 94.24

Patient-4 52.46 99.72 99.97 99.99 99.82 94.20 99.98 99.30 99.14

Patient-5 99.00 99.99 99.95 99.92 99.87 99.94 99.98 99.95 99.86

Patient-7 99.60 99.89 99.90 99.98 100.00 98.87 100.00 99.47 99.48

Patient-8 94.51 99.54 99.14 98.39 98.62 99.57 98.50 99.36 98.88

Patient-9 75.58 92.07 97.97 96.82 36.37 94.15 47.72 94.70 71.43

Patient-10 96.55 99.91 99.93 99.94 99.93 99.93 99.93 99.91 99.88

Patient-11 95.73 99.73 99.57 99.42 99.32 99.83 99.68 99.65 99.87

Patient-13 96.25 96.40 99.32 98.94 99.40 98.72 99.21 98.32 98.70

Patient-14 99.75 99.96 99.97 99.96 99.95 99.95 99.97 99.96 99.93

Patient-15 98.80 99.82 99.77 99.81 99.94 99.76 99.88 99.79 99.75

Patient-17 98.23 59.53 44.35 56.06 58.32 58.58 52.91 47.12 55.82

Patient-18 93.99 97.27 99.35 96.60 99.59 99.73 99.72 99.72 98.40

Patient-19 97.13 99.50 99.72 99.87 99.37 99.20 99.95 99.31 100.00

Patient-20 97.79 99.48 99.27 99.84 99.74 99.35 99.73 99.31 99.26

Patient-21 98.34 99.93 99.92 99.73 99.79 99.80 99.85 99.97 99.74

Patient-22 93.29 99.60 99.61 99.82 96.84 99.58 99.77 99.74 99.75

Patient-23 99.05 99.70 99.98 99.97 99.79 99.65 99.98 99.60 99.91

Patient-24 99.59 73.99 74.75 53.54 68.94 79.29 67.93 78.54 78.54

Average 94.71 96.63 96.49 95.65 94.88 96.75 95.07 96.53 96.10
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24 min of non-seizure data as the negative samples to train our

system, which is then used to classify a total duration of around

146 h of EEG data of the 21 patients. To our best knowledge, this

is the first patient-specific system ever proposed in the literature,

which uses such a low training rate and uses only the early record-

ings. The parameters of MD-PSO are set as follows: we use the ter-

mination criteria as the combination of the maximum number of

iterations allowed (iterNo = 100) and the cut-off error (eC = 10ÿ4).

Other parameters were empirically set as: the swarm size, S = 60,

Vmax = xmax/5 = 0.2 and VDmax = 5, respectively. We use the typical

activation function for MLPs: hyperbolic tangent (tanhðxÞ ¼ exÿeÿx

exþeÿx
).

For the AS, we used simple configurations with the following range

arrays: Rmin ¼ fNi;8; 2g and Rmax ¼ fNi; 24; 2g; which indicate that

besides the Single Layer Perceptron (SLP), all MLPs have only a sin-

gle hidden layer, i.e. Lmax = 2, with no more than 24 hidden neu-

rons. Besides the SLP, the hash function enumerates all MLP

configurations in the AS, as shown in Table 4.

6.1. CNBC-E performance plots

We shall start our performance analysis by demonstrating the

continuous improvement of the sensitivity with the consecutive

ESA and MF operations applied over the classification map of each

CNBC within the CNBC-E. The plots in Fig. 11 belongs to the 21 h of

EEG data from 4 patients (Patient 1, 3, 5 and 8) and presents both

individual and ESA (alone and along with MF operations) sensitiv-

ity and specificity values. Since each CNBC is evolved with only 100

MD PSO iterations without a deep convergence, a significant

variation can be observed within the individual sensitivity and

specificity values indicating a highly divergent seizure frame

classification, which in turn leads to significant sensitivity

improvements via ESA. Note, for instance in plots for Patients 3

and 5, the individual sensitivity levels by each CNBC is less than

0.9 (90%) whereas the ESA (with or without the MF operation)

can surpass 95% or even higher in couple of iterations. This clearly

Fig. 12. EEG of seizure, nton-seizure and the false-positive segments illustrated in classification map of he CNBC-E for Patients 1 (top) and 10 (bottom).
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indicates that most of the seizure frames missed by the early

CNBCs can still be detected and hence aggregated by the latter ones

thanks to such a high divergence level reached among them. The

MF operations, on the other hand, prevent the specificity level to

significantly degrade.

6.2. Overall classification performance and comparative evaluations

The EEG classification performance is measured using the three

standard metrics: classification accuracy (Acc), sensitivity (Sen),

and specificity (Spe). While accuracy measures the overall system

performance over both classes of the frames, the other metrics

are specific to each individual class, seizure and non-seizure. The

respective definitions of these three common metrics using true

positive (TP), true negative (TN), false positive (FP), and false nega-

tive (FN) are as follows: Accuracy is the ratio of the number of cor-

rectly classified frames to the total number of frames classified, i.e.,

Acc = (TP + TN)/(TP + TN + FP + FN); Sensitivity is the rate of correctly

classified seizure frames among all seizure frames, Sen = TP/

(TP + FN); and Specificity is the rate of correctly classified non-sei-

zures among all non-seizures, Spe = TN/(TN + FP). Due to the highly

unbalanced numbers of seizure and non-seizure frames, the accu-

racy is not a relevant performance metric and as discussed earlier,

the accurate classification of the seizure frames is of utmost impor-

tance and hence makes the sensitivity rate as the primary perfor-

mance metric. On the other hand, a reasonable level of specificity

is acceptable since the Neurologist can easily discard or correct

the false positives whenever necessary.

Table 5 presents the sensitivity rates obtained per patient in the

database using the proposed system and the 8 competing methods.

In the literature, SVMs are commonly used for EEG classification

and thus we used them as the competing classifiers. Among many

kernel alternatives, we used the linear kernel since it gives the best

results on the test set as compared to other kernel alternatives

such as RBF, polynomial or Gaussian. Besides using the original fea-

ture set, we also used the state-of-the-art feature selection tech-

niques to remove irrelevant features in order to avoid ‘‘Curse of

Dimensionality’’ phenomenon for the classifier. These techniques

are Conditional Mutual Information Maximization (CMIM) [31],

Fast Correlation Based Filter (FCBF) [32], Mutual Information Fea-

ture Selection (MIFS) [33], Mutual Information Maximization

(MIM) [34], Max-Relevance Min-Redundancy (MRMR) [35], Joint

Mutual information (JMI) [36], and Double Input Symmetrical Rel-

evance (DISR) [37]. In this study we performed CMIM to select 50

most relevant features among 342 features for each individual

channel. The number 50 is empirically chosen based on trial and

error. Recall that each competing method is also patient-specific

where feature selection and classifier training are both performed

over the same training dataset using the same features as for the

proposed system. When the average sensitivity rates are com-

pared, a significant performance gap between the proposed system

and all the competing methods can be observed, i.e., the CNBC

based EEG classification system achieved 13% or higher sensitivity

rate on the average. Particularly for some patients, the competing

methods entirely failed the classification, yielding <20% sensitivity

rates. Such a failure may happen for any patient and thus this

makes them unreliable for any practical usage. Note that the pro-

posed system alone ensures a minimum of 63.51% sensitivity rate.

The specificity rates are presented in Table 6. All methods

achieved >94% specificity rates that are within close vicinity of

each other (�2% or less). The proposed system achieved an average

specificity rate of 94.72%, which presents a considerable amount of

false positives. A closer inspection, however, indicates that most of

those false positive segments, although not labeled as the seizure

in the benchmark database, show a high structural resemblance

to the seizure sections and therefore, may still be interesting and

informative for some abnormal brain activity. For example, EEG

waveforms of the typical seizure, non-seizure and the false-posi-

tive segments as illustrated in classification map of the CNBC-E

for Patients 1 (top) and 10 (bottom) are shown in Fig. 12. It is obvi-

ous that the EEG waveforms of the relevant channels highlighted in

the figure exhibit major similarities between the false positives

and the labeled seizure segments, e.g., for Patient 1, frantic theta

band rhythm with increased dynamic range can be observed on

the central and parietal part of the brain (P7-O1 and C3-P3) as

highlighted in red. Furthermore, such false positives may also be

an indicator of an incoming or end of a seizure attack because it

is a known fact that between seizures, the EEG of a patient with

epilepsy may exhibit abnormal rhythmic activities or frequent

discharges.

6.3. Computational complexity analysis

The CNBC-E system architecture has been developed in har-

mony with a distributed computing scheme, the Techila Grid

[30]. Computational problems can be divided into two main cate-

gories; parallel problems and embarrassingly parallel problems.

The entire frame-based EEG data processing including pre-process-

ing and feature extraction over all channels and with different

methods is an example of the latter and can be performed in par-

allel. Note that the evolution process of the CNBC-E consists of

individual evolutions of the CNBCs that can be performed in paral-

lel. Moreover, each CNBC evolution process is also an example of

the embarrassingly parallel problems and therefore, this makes it

an ideal work that can be distributed within the grid system, which

contains a massive number of computers (i.e. the so-called ‘‘Work-

ers’’ within the grid). In the current scheme each NBC evolution is

assigned to an individual worker but in theory, each BC evolution

can even be parallelized with a proper semaphore implementation

so as to secure the order of evolutionary phases, 1, 2 and then 3

(e.g. see Fig. 10). In this case, the computational complexity of

the entire CNBC evolution will only be proportional with the evo-

lution of a single BC, regardless of the number of feature extraction

methods and channels. The computational complexity analysis of

the evolutionary ANNs were presented in [11] and as stated earlier,

using a limited AS with a few compact MLP configurations and per-

forming a shallow evolutionary process with only 100 iterations to

improve divergence, the computational complexity is therefore,

significantly reduced. In our MATLAB implementation, the average

feature extraction time over a one-second frame is around 280 ms,

which is also insignificant and can further be reduced with a ded-

icated and optimized implementation. As a result, the CNBC-E evo-

lution is performed in parallel within a reasonably short time that

is in the order of evolving a single BC. Note that besides the occa-

sional incremental evolutions, if ever needed at all, the CNBC-E will

be evolved only once for a patient, stored and then can conve-

niently be used any time to classify his/her EEG records, in offline

mode or even in real-time since for the classification of 1 s EEG

data, the time for data processing and propagation of the frame

features through the CNBC-E is only a mere fraction of a second

(typically less than 20 ms).

7. Conclusions

In this paper, we proposed a novel patient-specific classifier for

long-term EEG signals. The classifier topology of this system,

CNBC-E, is not only a seizure onset detector; rather attempts to

accurately classify all seizure frames in the seizure sections in a

generic way. Another major difference from the majority of the

methods proposed in this domain is that it aims to maximize the

sensitivity rate using the minimum feedback from the Neurologist.
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To mimic this, we only used about 2 min of seizure and 24 min

non-seizure labeled data per patient on the average to evolve the

system and this training dataset is formed from the Neurologist’s

labels of the early 25% section of the patient’s EEG record. To max-

imize the learning ability from such a limited training dataset and

to learn as much patient’s EEG pattern characteristics as possible,

the CNBC-E uses the majority of the state-of-the-art features pro-

posed in this domain. This is indeed the opposite path followed

by many methods in the literature based on a single and static clas-

sifier so as to avoid the well-known ‘‘Curse of Dimensionality’’ phe-

nomenon. CNBC-E, on the other hand, can truly take benefit of such

a large feature collection due to its ‘‘Divide and Conquer’’ philoso-

phy that is the basis of its topology. Furthermore, rather than rely-

ing on sub-optimum static classifiers fixed in advance; each binary

classifier within all CNBCs is individually evolved to find out the

optimal ANN configuration for the problem (i.e., for the patient,

the EEG channel and the feature) in hand. In this way, each CNBC

can ‘‘learn’’ and weight accordingly which features and channels

are the most relevant and discriminative for the patient and the

CNBC-E can aggregate the new seizure frames detected in each

CNBC whilst filtering the classification noise as much as possible.

The results of the classification experiments, which are per-

formed over the benchmark CHB-MIT scalp long-term EEG data-

base show that the proposed system can achieve all the

aforementioned objectives. Using such a limited training dataset,

the proposed system established an average sensitivity rate of

89.01% along with an average specificity rate of 94.71% over the

test set. The comparative evaluations against the competing meth-

ods indicate the superiority of the proposed systemwhich achieves

13% higher average sensitivity rate over the best competitor. An-

other observation worth mentioning is that for more than half of

the patients, the proposed system achieved the sensitivity rates

above 90% and for only 3 patients (Patients 4, 17 and 23) out of

21 it is below 80%. A detailed investigation reveals that for these

patients the seizure has a highly non-stationary nature. Therefore,

the training set formed from the labels of the early 25% EEG record-

ing do not have the entire seizure and non-seizure characteristics

that can be learned. It is obvious that for those patients, further

feedback from the Neurologist is needed for the misclassified sei-

zure sections so as to incrementally evolve the CNBC-E system

and thus to improve the overall classification performance. This

will be the topic for our future research.
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