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Abstract—Goal: This paper presents a fast and accurate patient-
specific electrocardiogram (ECG) classification and monitoring
system. Methods: An adaptive implementation of 1-D convolutional
neural networks (CNNs) is inherently used to fuse the two ma-
jor blocks of the ECG classification into a single learning body:
feature extraction and classification. Therefore, for each patient,
an individual and simple CNN will be trained by using relatively
small common and patient-specific training data, and thus, such
patient-specific feature extraction ability can further improve the
classification performance. Since this also negates the necessity to
extract hand-crafted manual features, once a dedicated CNN is
trained for a particular patient, it can solely be used to classify
possibly long ECG data stream in a fast and accurate manner or
alternatively, such a solution can conveniently be used for real-time
ECG monitoring and early alert system on a light-weight wearable
device. Results: The results over the MIT-BIH arrhythmia bench-
mark database demonstrate that the proposed solution achieves
a superior classification performance than most of the state-of-
the-art methods for the detection of ventricular ectopic beats and
supraventricular ectopic beats. Conclusion: Besides the speed and
computational efficiency achieved, once a dedicated CNN is trained
for an individual patient, it can solely be used to classify his/her
long ECG records such as Holter registers in a fast and accurate
manner. Significance: Due to its simple and parameter invariant
nature, the proposed system is highly generic, and, thus, applicable
to any ECG dataset.

Index Terms—Convolutional neural networks (CNNs), patient-
specific ECG classification, real-time heart monitoring.

I. INTRODUCTION

D
ESPITE the easiness of acquiring the data, there are still

challenges ahead of us in order to extract reliable informa-

tion from biomedical signals. Each heartbeat in the cardiac cycle

shows the time evolution of the heart’s electrical activity, which

is made up of distinct electrical depolarization-repolarization

patterns of the heart. For an expert cardiologist, any anomaly

over the heart rate or rhythm or change in themorphological pat-

tern over a recorded ECGwaveform can easily be detected as an

indication of an arrhythmia. However, this can turn out to be very

challenging task for an automatic computerized system due to

several reasons. Certain contaminations of biomedical signals to
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physiological artefact and external noise as well as imbalanced

classes among biomedical signals (e.g., N- and S-type beats in

an ECG signal) make the system’s performance and accuracy

significantly varying from patient to patient. Particularly, the

time-varying dynamics and the morphological characteristics

of ECG signals show significant variations for different patients

and under different temporal and physical conditions. Even for

the ECG of a healthy subject, which appears to be determin-

istic, the shapes of QRS complex, P waves, and R–R intervals

will not be the same from one beat to the other under different

circumstances [1].

There have been several methods for generic and fully auto-

matic ECG classification based on signal processing techniques,

such as frequency analysis [2], wavelet transform [3] and filter

banks [4], statistical [5] and heuristic approaches [6], hidden

Markov models [7], support vector machines [8], artificial neu-

ral networks (ANNs) [9], and mixture-of-experts method [10].

Generally speaking, they have not performed well in practice

due to the aforementioned interpatient variations of the ECG

signals, and thus, they usually exhibit a common drawback of

having an inconsistent performance when, for instance, classi-

fying a new patient’s ECG signal. This makes them unreliable

to be widely used clinically or in practice, and they tend to

have high variations in their accuracy and efficiency for larger

databases [11], [12].

Another severe problem is the lack of application of the com-

mon practice when evaluating and testing a particular method

over a benchmark dataset. For this purpose, the Association for

the Advancement of Medical Instrumentation (AAMI) provides

standards and recommended practices for performance results

of automated arrhythmia detection algorithms [13]. However,

among many methods in the literature, only few [10], [14]–[18]

have in fact used the AAMI standards along with the complete

data from the benchmark MIT-BIH arrhythmia database [22].

Among all, only few of them with a patient-specific design [10],

[12], [15]–[18] have, in particular, demonstrated significant per-

formance improvements over the automatic and generic ECG

classificationmethods thanks to their ability to adapt or optimize

the classifier body according to each patient’s ECG signal.

The aforementioned patient-specific ECG classification

systems have a common approach with two major operations:

feature extraction and training classification over the extracted

features. They demonstrated that the ECG classification perfor-

mance strongly depends on the characterization power of the

features extracted from the ECG data. In the ECG classifica-

tion literature, a vast number of features, their combinations,

and feature selection approaches have been proposed [20]. In

a former work, Hermite transform coefficients [15] achieved
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such a performance that is significantly higher than the others.

Due to its time–frequency localization properties, the wavelet

transform proves to be an efficient tool for analyzing nonsta-

tionary ECG signals [19]. In our prior work, Kiranyaz et al.

[16], [17] that achieved superior performance than [15], we

used translation-invariant dyadic wavelet transform to extract

morphological features, and in order to avoid the well-known

“Curse of Dimensionality” phenomenon and to significantly

reduce redundancies in such a high-dimensional data space,

the dimension of the input feature vectors has further been re-

duced by using principal component analysis (PCA). The lower

dimensional morphological feature vector was then combined

with two critical temporal features to form the final feature vec-

tor. However, using such fixed and hand-crafted features may

not represent the characteristics of the underlying signal in an

optimal way and obviously this is against the philosophy of a

“patient-specific” approach since the same set of features will be

used for all patients under all circumstances. The true “patient-

specific” solution indeed requires the design of the best possible

features for each individual ECG data. Moreover, extracting

several features, especially in the transform domains along with

the postprocessing methods such as PCA may significantly in-

crease the computational complexity of the overall process, and

this may hinder them from the usage in light-weight applica-

tions (e.g., mobile or wearable health monitoring devices) or for

the classification of large ECG records such as Holter registers.

In order to address such deficiencies and drawbacks, in this

paper, we propose a novel ECG classification approach based on

adaptive 1-D convolutional neural networks (CNNs). CNNs are

hierarchical neural networks whose convolutional layers alter-

nate with subsampling layers, reminiscent of simple and com-

plex cells in the human visual cortex [21], following with a fully

connected layers, which are identical to multilayer perceptrons

(MLP). They primarily mimic the human visual system, which

can efficiently recognize the patterns and structures (e.g., ob-

jects) in a visual scenery. CNNs are now commonly used for the

“deep learning” tasks, such as object recognition in large image

achieveswhile achieving the state-of-the-art performances [24]–

[26]. To our knowledge, this is the first study, where they are

used over 1-D signals, in particular, for the purpose of ECG clas-

sification and anomaly detection. With the proposed adaptation

over the traditional CNNs, the proposed approach can classify

each heart beat with any sampling rate; therefore, voiding the

need for anymanual feature extraction and postprocessing.With

the proper training, the convolutional layers of CNNs can learn

to extract patient-specific features, while the MLP layers per-

form the classification task to produce the final class vectors of

each beat. With the limited training data as proposed in [10] and

[14]–[17], we shall demonstrate that simple CNNs will suffice

to achieve a superior classification performance rather than the

complex ones that are commonly used for deep learning tasks.

As a result, simple 1-D CNNs are easier to train with only few

dozens of back-propagation (BP) epochs, and can, thus, per-

form the classification task with utmost speed (requiring only

few hundreds of 1-D convolutions). This makes them a perfect

choice for real-time ECG monitoring and early alert system on

light-weight devices. An illustration of the proposed approach

is shown in Fig. 1. Finally, we aim to achieve a high level of

robustnesswith respect to the variations of the dataset, since the

proposed system is designed with a minimum set of parameters

and manual settings thanks to the combined learner for feature

extraction and classification.

The rest of this paper is organized as follows. Section II

outlines the ECG dataset used in this study, and provides a

detailed description of the possible raw data representations

for the proposed patient-specific heartbeat classification system.

The adaptive 1-D CNNs along with the BP training method

are presented in Section III. In Section IV, the performance

and robustness of the proposed approach are evaluated over the

MIT/BIH arrhythmia database using the standard performance

metrics, and the results are compared with the previous state-

of-the-art works. Finally, Section V concludes this paper.

II. ECG DATA PROCESSING

In this study, ECG datasets from the MIT/BIH arrhythmia

database [22] are used for the performance evaluation of the pro-

posed patient-specific ECG approach. This benchmark database

contains 48 records, each containing two-channel ECG signals

for 30-min duration selected from 24-h recordings of 47 indi-

viduals. Continuous ECG signals are bandpass filtered at 0.1–

100 Hz and then digitized at 360 Hz. The database contains an-

notation for both timing information and beat class information

verified by independent experts. In this study, we followed the

identical data partitioning as in [16] and [17] so as to comply

with the AAMI ECAR-1987 recommended practice [13]. We

used 44 records from the MIT/BIH arrhythmia database, ex-

cluding four records, which contain paced heartbeats. The first

20 records (numbered in the range of 100–124), which include

representative samples of routine clinical recordings, are used to

select representative beats to be included in the common training

data. The remaining 24 records (numbered in the range of 200–

234) contain uncommon but clinically significant arrhythmias,

such as ventricular, junctional, and supraventricular arrhythmias

[27]. A total of 83648 beats from all 44 records are used as test

patterns for performance evaluation. AAMI recommends that

each ECG beat be classified into the following five heartbeat

types: N (beats originating in the sinus mode), S (supraven-

tricular ectopic beats), V (ventricular ectopic beats), F (fusion

beats), and Q (unclassifiable beats). For all records, we used the

modified-lead II signals, and utilized the labels to locate beats

in ECG data. The beat detection process is beyond the scope

of this paper, as many highly accurate (> 99%) beat detection

algorithms have been reported in the literature [19], [23].

The raw data of each beat are represented by 64 or 128 sam-

ples by downsampling where the latter is intended for the evalu-

ation of the higher resolution data representation. As illustrated

in Fig. 1, in order to learn the morphological structure of the

beat, equal number of samples from each side from the R (cen-

ter) point of the beat are fed into a neuron of the CNN’s in-

put layer. In order to learn the temporal characteristics of each

beat, a beat trio is formed from its neighbor beats, and is fed

into another neuron at the input layer. Therefore, the differ-

ence in timing information of the center beat together with its
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Fig. 1. Overview of the proposed approach in training (offline) and real-time classification and monitoring phases.

neighbors in the beat-trio formation can indicate timing infor-

mation related ECG anomalies such as the presence of an APC

(S) beat. This is the base representation of each beat’s raw data

and on top of this, FFT of each beat (both magnitude and phase)

will also be considered as the extended raw data representation

in the frequency domain. The purpose is to evaluate the perfor-

mance gain—if any—obtained by such extension in raw-data

representation.

The data used for training the individual patient’s classifier

consist of two parts: global (common to each patient) and local

(patient-specific) training patterns. While patient-specific data

contain the first 5-min segment of each patient’s ECG record

and is used as a part of the training data to perform patient

adaptation, the global dataset contains a relatively small num-

ber of representative beats from each class in the training files,

and helps the classifier learn other arrhythmia patterns that are

not included in the patient-specific data. This practice conforms

to the AAMI recommended procedure allowing the usage of at

most 5-min section from the beginning of each patient’s record-

ing for training [13].

III. ADAPTIVE 1-D CNNS

As mentioned earlier, adaptive 1-D CNNs are used for both

feature extraction and classification of the raw ECG data from

each individual patient in the database. In Appendix A, we

introduced an overview of the traditional CNNs developed for

a 2-D image classification. Accordingly, we shall present the

design of our adaptive CNNs in accordance with the traditional

CNNs in 2-D and formulate its BP training. Finally, we shall

highlight the changes and modifications needed for 1-D CNNs

from their 2-D counterparts along with the BP formulations.

To simplify the CNN analogy and to have the freedom of

any input layer dimension independent from the CNN parame-

ters, the neurons of the hidden CNN layers are extended such

that they are capable of both convolution and downsampling as

shown in Fig. 2. This implementation also allows the ability of a

“CNN-only” design without theMLP layers. For the illustration

purpose, we assume 3× 3 kernels (Kx = Ky = 3) for all CNN
layers in the figure; however, different kernel sizes can also be

assigned if desired. The final output of the kth neuron at layer

l, sl
k , is, therefore, the subsampled version of the intermediate

output yl
k . During the forward propagation (FP), the input map

of the next layer neuron will be obtained by the cumulation of

the final output maps of the previous layer neurons convolved

with their individual kernels as follows:

xl
k = bl

k +

N l−1
∑

i=1

conv2D(wl−1
ik , sl−1

i ) (1)

where conv2D (.,.) is a regular 2-D convolution without zero

padding on the boundaries, xl
k is the input, b

l
k is the bias of the

kth neuron at layer l, and sl−1
i is the output of the ith neuron

at layer l–1. wl−1
ik is the kernel (weight) from the ith neuron at

layer l–1 to the kth neuron at layer l. To accomplish BP training,

there are three more elements that are stored for each neuron:

the delta error ∆l
k , downsampled delta error ∆l

sk , and, finally,

the derivative of the intermediate output f ′(xl
k ), all of which

will be explained in the next section.
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Fig. 2. Adaptive CNN implementation.

We aim that the number of hidden CNN layers can be set

to any number. This ability is possible in this implementation

because the subsampling factor of the output CNN layer (the

hidden CNN layer just before the first MLP layer) is automat-

ically set to the dimensions of its input map, e.g., in Fig. 2, if

the layer l + 1 would be the output CNN layer, then the sub-

sampling factors for that layer will be ssx = ssy = 8 since the
input map dimension is 8× 8 in this sample illustration. Besides
the subsampling, note that the dimension of the input maps will

gradually decrease due to the convolution without zero padding,

i.e., in Fig. 2, the dimension of the neuron output is 22 × 22 at
the layer l – 1 that is reduced to 20× 20 at the layer l. As a result

of this, the dimension of the input maps of the current layer is

reduced by (Kx–1, Ky–1), where Kx and Ky are the width and

height of the kernel, respectively.

A. Intra-BP Within a CNN Neuron:∆l
k ←− ∆sl

k

The BP among MLP layers and from the first MLP layer to

the output CNN layer is covered in Appendix B. Once the first

BP is performed from the next layer, l + 1, to the current layer,
l, then we can further BP it to the input delta. Let zero order

upsampled map be: usl
k = upssx,ssy (sl

k ), then one can write

∆l
k =

∂E

∂xl
k

=
∂E

∂yl
k

∂yl
k

∂xl
k

=
∂E

∂usl
k

∂usl
k

∂yl
k

f ′(xl
k )

= up(∆sl
k )β f ′(xl

k ) (2)

where β = (ssx.ssy)−1
since each pixel of sl

k was obtained by

averaging ssx.ssy number of pixels of the intermediate output

yl
k . If maximum pooling is used instead of averaging, then (2)

should be adapted accordingly.

B. Inter-BP Among CNN Layers: ∆sl
k

∑

←−−−∆l+1
l

Recall the basic rule of BP: if the output of the kth neuron at

layer l, contributes a neuron i in the next level with a weight,

wl
ki , that next layer neuron’s delta, ∆

l+1
ı , will contribute with

the same weight to form ∆l
kof the neuron in the previous layer

l. This means

∂E

∂sl
k

= ∆sl
k

∑

←−−−∆l+1
ı ∀i ∈ {1, Nl+1} (3)

Specifically

∂E

∂sl
k

= ∆sl
k =

N l + 1
∑

i=1

∂E

∂xl+1
i

∂xl+1
i

∂sl
k

=

N l + 1
∑

i=1

∆l+1
ı

∂xl+1
i

∂sl
k

(4)

where

xl+1
i = . . . + sl

k
∗wl

ki + · · · (5)

where “∗” is the regular conv2D(.,.) operator without zero
padding. It is obviously hard to compute the derivative directly

from the 2-D convolution. Instead let us focus on the contribu-

tion of a single output pixel,sl
k (m,n), to the pixels of the next

layer map, xl+1
i (m,n), assuming a 3 × 3 kernel

xl+1
i (m − 1, n − 1) = . . . + sl

k (m,n).wl
ki(2, 2) + . . .

xl+1
i (m − 1, n) = . . . + sl

k (m,n).wl
ki(2, 1) + . . .

. . . . . .

xl+1
i (m + 1, n + 1) = . . . + sl

k (m,n).wl
ki(0, 0) + . . . (6)

This is illustrated in Fig. 3, where the role of an output pixel,

sl
k (m,n), over two pixels of the next layer’s input neuron’s
pixels xl+1

i (m − 1, n − 1)and xl+1
i (m + 1, n + 1) can be seen.

Considering the pixel as a MLP neuron connected to other

MLP neurons in the next layer, according to the basic rule of
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Fig. 3. Single pixel’s contribution of the output sl
k
(m, n) to the two pixels of

the xl+1
i

using a 3 × 3 kernel.

BP one can then easily write the delta of sl
k (m,n) as

∂E

∂sl
k

(m,n) = ∆sl
k (m,n)

=

N l + 1
∑

i=1

(

1
∑

r=−1

1
∑

t=−1

∆l+1
ı (m + r, n + t)

·wl
ki(1 − r, 1 − t)

)

(7)

generalizing it for all pixels of the ∆sl
k yields

∆sl
k =

N l + 1
∑

i=1

conv2Dz
(

∆l+1
ı , rot180(wl

ki)
)

(8)

where rot180(.) rotates the kernel, wl
ki , 180°, and then

conv2Dz(.,.) performs a full convolution with zero padding by

(Kx–1, Ky–1) zeros to each boundary of the ∆l+1
ı in order to

achieve equal dimensions (width and height) for∆sl
k and∆l+1

ı

with the sl
k .

C. Computation of the Weight (Kernel) and Bias Sensitivities

As in the regular BP on MLPs, the delta of the ith neuron at

layer l + 1, ∆l+1
i will be used to update the bias of that neuron,

and all weights of the neurons in the previous layer connected

to that neuron as given in (19):

xl+1
i = bl+1

ı + · · · + yl
kwl

ki + · · ·

∴

∂E

∂wl
ki

= yl
k ∆l+1

i and
∂E

∂bl+1
ı

= ∆l+1
i . (9)

Recall the update rule: The sensitivity of the weight connect-

ing the kth neuron in the current layer to the ith neuron in the

next layer depends on the output of the current layer neuron,

and the delta of the next layer neuron. For CNN layer neurons,

we need to follow a similar approach to find out weight and bias

sensitivities. Fig. 4 illustrates the convolution of the output of

the current layer neuron sl
k and kernel w

l
ki to form the input of

the ith neuron xl+1
i at the next layer l + 1.

So now, we can focus on the contribution of each kernel ele-

ment over the output. The following expressions can be written

Fig. 4. Convolution of the output of the current layer neuron sl
k
and kernel

w l
k i
to form the input of the ith neuron xl+1

i
at the next layer l + 1.

for the sample 2-D convolution shown in Fig. 4:

xl+1
i (0, 0) = · · · + wl

ki(0, 0)sl
k (0, 0) + wl

ki(0, 1)sl
k (0, 1)

+wl
ki(1, 0)sl

k (1, 0) + · · ·

xl+1
i (0, 1) = · · · + wl

ki(0, 0)sl
k (0, 1) + wl

ki(0, 1)sl
k (0, 2)

+wl
ki(1, 0)sl

k (1, 1) + · · ·

xl+1
i (1, 0) = · · · + wl

ki(0, 0)sl
k (1, 0) + wl

ki(0, 1)sl
k (1, 1)

+wl
ki(1, 0)sl

k (2, 0) + · · ·

xl+1
i (m,n) = · · · + wl

ki(0, 0)sl
k (m,n) + wl

ki(0, 1)

×sl
k (m,n + 1) + wl

ki(1, 0)sl
k (m + 1, n) + · · ·

xl+1
i (m,n) =

1
∑

r=−1

1
∑

t=−1

wl
ki(r + 1, t + 1)

×sl
k (m + r + 1, n + t + 1). (10)

Since each weight (kernel) element is used (shared) in com-

mon to form each neuron input, xl+1
i (m,n), the derivative will

be the cumulation of delta-output product for all pixels, i.e.,

∂E

∂wl
ki(r, t)

=
∑

m

∑

n

∆l+1
i (m,n)sl

k (m + r, n + t)

⇒
∂E

∂wl
ki

= conv2D(sl
k ,∆l+1

i ). (11)

Similarly, the bias of this neuron, bl
k , contributes to all pixels

in the image (same bias shared among all pixels), so its sen-

sitivity will be the cumulation of individual pixel sensitivities

i.e.,

∂E

∂bl
k

=
∑

m

∑

n

∂E

∂xl
k (m,n)

∂xl
k (m,n)

∂bl
k

=
∑

m

∑

n

∆l
k (m,n). (12)

As a result, the iterative flow of the BP can be stated as

follows.

1) Initialize weights [usually randomly, U(–a, a)].

2) For each BP iteration DO:

a) For each item (or a group of items or all items) in

the dataset, DO:
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i) FP: FP from the input layer to the output

layer to find outputs of each neuron at each

layer yl
i ∀i ∈ [1, Nl ] and ∀l ∈ [1, L].

ii) BP: Compute delta error at the output layer

and BP it to first hidden layer to com-

pute the delta errors∆l
k ∀k ∈ [1, Nl ] and ∀l

∈ [2, L − 1].
iii) PP: Postprocess to compute the weight and

bias sensitivities using (11), (12), and (25).

iv) Update: Update the weights and biases with

the (cumulation of) sensitivities found in (c)

scaled with the learning factor ε:

wl−1
ik (t + 1) = wl−1

ik (t) − ε
∂E

∂wl−1
ik

bl
k (t + 1) = bl

k (t) − ε
∂E

∂bl
k

(13)

B. Changes for the Adaptive 1-D CNN Implementation

There are only some minor differences between the 2-D and

1-D CNNs. The main difference is obviously the 1-D arrays

used in each neuron for its kernels (weights), input and output

elements for both FP and BP rather than 2-D matrices. There-

fore, during both FP and BP runs, 1-D array manipulations such

as conv1D and reverse will be performed instead of 2-D matrix

operations, such as conv2D and rot180. The 2-D parameters for

kernel size (Kx, Ky) and subsampling (ssx, ssy) are now single

scalars K and ss, respectively. If present, the MLP layers of the

1-D CNN are identical to the 2-D counterpart, and, therefore,

same equations can be used for both FP and BP on those layers.

The expression of the 2-D FP given in (26) can now be written

as

xl
k = bl

k +

N l−1
∑

i=1

conv1D(wl−1
ik , sl−1

i ). (14)

The inter-BP delta error of the output sl
k given in (8) can now

be expressed for 1-D as

∆sl
k =

N l + 1
∑

i=1

conv1Dz
(

∆l+1
ı , rev(wl

ki)
)

(15)

where rev(.) reverses the array, and conv1Dz(.,.) performs full

convolution in 1-D with K–1 zero padding. The intra-BP is also

identical to the one for 2-D CNNs, as expressed in (2), while

β = ss−1 and a 1-D upsampling operator is now used. Finally,

the weight and bias sensitivities given in (11) and (12) for 2-D

can now be expressed for 1-D CNNs as

∂E

∂wl
ki

= conv1D(sl
k ,∆l+1

i )

∂E

∂bl
k

=
∑

n

∆l
k (n). (16)

IV. EXPERIMENTAL RESULTS

In this section, we shall first present the experimental setup

for the test and evaluation of the proposed patient-specific ECG

classification approach. We shall then present the overall results

obtained from the ECG classification experiments and perform

comparative evaluations against several state-of-the-art tech-

niques in this field. The robustness of the proposed system

against variations of signal resolution (hence, the CNN con-

figuration) and raw data representation will then be evaluated.

Finally, the computational complexity of the proposed method

for both training and classification will be evaluated in detail.

A. Experimental Setup

As mentioned earlier, in order to evaluate the effects of dif-

ferent resolutions and raw data representations particularly in

the transform domain, we used two alternatives for each case.

The beats are represented in both 64 and 128 samples centered

on the R-peak, and we used the FFT representation (magnitude

and phase) of each beat as in the extended data representation.

We purposefully used a simple 1-D CNN in all experiments

with only three CNN layers and two MLP layers, in order to

achieve the utmost computational efficiency for both training

and particularly for real-time classification. On top of this, we

aim to demonstrate that deep learners are not indeed needed

to achieve a superior ECG classification performance. The

1-D CNN used in all experiments has 32 and 16 neurons on

the first- and second-hidden CNN layers and ten neurons on the

hiddenMLP layer. The output (MLP) layer size is 5 which is the

number of beat classes and the input (CNN) layer size is either

2 (base) or 4 (extended) according to the choice of raw data

representation. For 64 and 128 sample beat representations, the

kernel sizes are set to 9 and 15, and the subsampling factors are

set to 4 and 6, respectively. As a result, in the proposed adaptive

CNN implementation, the subsampling factors for the last CNN

layers are automatically set to 6 and 5, respectively.

For all experiments, we employ a shallow training: the maxi-

mum number of BP iterations is set to 50, and another stopping

criterion is the minimum train classification error level that is

set to 3% to prevent overfitting. Therefore, the training will ter-

minate if either of the criteria is met.We initially set the learning

factor ε as 0.001, and applied a global adaptation during each

BP iteration; if the train mean-squared error (MSE) decreases

in the current iteration, we slightly increase ε by 5%; otherwise,

we reduce it by 30% for the next iteration. As BP is a deter-

ministic gradient-descent optimization technique, which makes

it quite dependent to the initial (random) setting of the network

parameters (kernels, weights, and biases), we performed ten in-

dividual BP runs for each patient in the database, and the average

classification performance is reported.

B. Base Classification Performance Evaluation

We performed classification experiments on 44 records of the

MIT/BIH arrhythmia database, containing a total of 100389

beats to be classified into five heartbeat types according to

the AAMI recommendation [13]. For training the 1-D CNNs,

both common and patient-specific training patterns are used; the

common part of the training dataset contains a total of 245 rep-

resentative beats, including 75 from each type-N, type-S, and

type-V beats, and all (13) type-F and (7) type-Q beats, randomly



IE
E
E

P
ro
o
f

KIRANYAZ et al.: REAL-TIME PATIENT-SPECIFIC ECG CLASSIFICATION BY 1-D CONVOLUTIONAL NEURAL NETWORKS 7

TABLE I
CONFUSIONMATRICES OF THE ECG BEAT CLASSIFICATION RESULTS FOR ALL
44 RECORDS (BOTTOM) AND FOR THE 24 TEST RECORDS (TOP) IN THE

MIT/BIH ARRHYTHMIA DATABASE

Classification Result

Ground Truth N S V F Q

N 40963F (40532) 807 (776) 350 (382) 67 (56) 4 (20)

S 625 (672) 1440 (1441) 149 (197) 14 (5) 1 (5)

V 114 (392) 69 (299) 4247 (4022) 39 (75) 2 (32)

F 82 (164) 4 (26) 70 (46) 497 (378) 0 (2)

Q 6 (6) 2 (0) 5 (1) 0 (1) 0 (0)

Classification Result

Ground Truth N S V F Q

N 73539 (73019) 824 (991) 368 (513) 69 (98) 5 (29)

S 837 (686) 1568 (1568) 178 (205) 15 (5) 2 (6)

V 230 (462) 72 (333) 5277 (4993) 39 (79) 4 (32)

F 92 (168) 4 (28) 73 (48) 503 (379) 0 (2)

Q 31 (8) 2 (1) 5 (3) 0 (1) 4 (1)

The previous results from [16] are shown in parentheses.

TABLE II
VEB AND SVEB CLASSIFICATION PERFORMANCE OF THE PROPOSEDMETHOD
AND COMPARISONWITH FOURMAJOR ALGORITHMS FROM THE LITERATURE

Methods VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Hu et al. [10]1 94.8 78.9 96.8 75.8 N/A N/A N/A N/A

Jiang and Kong [15] 1 98.8 94.3 99.4 95.8 97.5 74.9 98.8 78.8

Ince et al. [16]1 97.9 90.3 98.8 92.2 96.1 81.8 98.5 63.4

Proposed1 98.9 95.9 99.4 96.2 96.4 68.8 99.5 79.2

Jiang and Kong [15] 2 98.1 86.6 99.3 93.3 96.6 50.6 98.8 67.9

Ince et al. [16]2 97.6 83.4 98.1 87.4 96.1 62.1 98.5 56.7

Proposed2 98.6 95 98.1 89.5 96.4 64.6 98.6 62.1

Ince et al. [16] 3 98.3 84.6 98.7 87.4 97.4 63.5 99.0 53.7

Proposed3 99 93.9 98.9 90.6 97.6 60.3 99.2 63.5

Best results are highlighted.
1The comparison results are based on 11 common recordings for VEB detection and

14 common recordings for SVEB detection.
2The VEB and SVEB detection results are compared for 24 common testing records

only.
3The VEB and SVEB detection results of the proposed system for all training and

testing records.

sampled from each class from the first 20 records (picked from

the range 100 to 124) of the MIT/BIH database, and the patient-

specific training data include the beats from the first 5 min of the

corresponding patient’s ECG record. Patient-specific 1-D CNN

networks are trained with a total of 245 common training beats,

and a variable number of patient-specific beats depending on

the patient’s heart rate, so only less than 1% of the total beats

are used for training. The remaining beats (25 min) of each

record, in which 24 out of 44 records are completely new to the

classifier, are used as test patterns for performance evaluation.

Classification performance is measured using the four stan-

dard metrics found in the literature [10]: classification accuracy

(Acc), sensitivity (Sen), specificity (Spe), and positive predictiv-

ity (Ppr). While accuracy measures the overall system perfor-

mance over all classes of beats, the other metrics are specific to

each class, and theymeasure the ability of the classification algo-

TABLE III
CONFUSIONMATRIX FOR THE ECG BEAT CLASSIFICATION OF THE PATIENT 202

Classification Result

Ground Truth N S V F Q

N 1435 258 10 0 0

S 11 15 28 0 0

V 4 1 10 0 0

F 1 0 0 0 0

Q 0 0 0 0 0

rithm to distinguish certain events (i.e., VEBs or SVEBs) from

nonevents (i.e., non-VEBs or non-SVEBs). The respective def-

initions of these four common metrics using true positive (TP),

true negative (TN), false positive (FP), and false negative (FN)

are as follows: Accuracy is the ratio of the number of correctly

classified patterns to the total number of patterns classified, Acc

= (TP+TN)/(TP+TN+FP+FN); Sensitivity is the rate of cor-

rectly classified events among all events, Sen = TP/(TP+FN);

Specificity is the rate of correctly classified nonevents among

all nonevents, Spe = TN/(TN+FP); and Positive Predictivity is

the rate of correctly classified events in all detected events, Ppr

= TP/(TP+FP). Since there is a large variation in the number

of beats from different classes in the training/testing data (i.e.,

39465/50354 type-N, 1277/5716 type-V, and 190/2571 type-S

beats), sensitivity, specificity, and positive predictivity are more

relevant performance criteria formedical diagnosis applications.

For the base performance evaluation, we shall consider the

base raw data represented by 128 samples (both the single beat

and the beat trio). The results of the other three alternatives

from the extended raw data and 64 samples representation over

the other 1-D CNN setup will be considered to demonstrate the

robustness of the system against the variations on raw data rep-

resentations, signal resolution, and CNN configurations. For the

proposed approach and the previous state-of-the-art method in

[16], Table I presents the confusion matrices of ECG beat clas-

sification results for all 44 records and the 24 records of the test

dataset. To perform a more extensive and accurate comparative

performance evaluation, the base performance of the proposed

system is compared with the three existing algorithms, [10],

[15], and [16], all of which comply with the AAMI standards.

Although P. de Chazal in [12] and [14] also comply with the

AAMI standards, since they used different training and test data,

it is not possible to directly compare their results with the pro-

posedmethod. In accordance with the AAMI recommendations,

the problem of VEB and SVEB detection is considered individ-

ually and results are summarized in Table II. The benchmark

MIT/BIH database is partitioned into three evaluation datasets.

For VEB detection, the dataset 1 contains 11 test recordings

(200, 202, 210, 213, 214, 219, 221, 228, 231, 233, and 234),

and for SVEB detection, comparison results are based on 14

common recordings (with the addition of records 212, 222, and

232). Dataset 1 is common for all competing methods. Dataset

2 is the test partition of the benchmark database containing 24

records (200 and onward). Three methods (the proposed, [15],

and [16]) are tested on this dataset. Finally, the dataset 3 is the
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Fig. 5. Four 5-beats interval from the test section of the patient 202’s ECG record with the ground truth labels.

entire database with all records over which two methods, the

proposed and [16] are tested.

Several interesting observations can be made from the results

in Table II. First, for SVEB detection, sensitivity and positive

predictivity rates are comparably lower than VEB detection,

while a high-specificity performance is achieved. The reason

for the worse classifier performance in detecting SVEBs is that

SVEB class is underrepresented in the training data, and, hence,

more SVEB beats are misclassified as normal beats. Moreover,

on several patients, particularly on the test dataset (dataset 2)

both the patient specific data from the first 5-min interval and the

common data of 200 beats extracted randomly from the training

dataset do not successfully characterize most of the S beats and

some of the V beats (e.g., patients 201, 202, 209, 222, and 232).

Take, for instance, the confusion matrix given for patient 202 in

Table III, where 258 normal beats are misclassified as S beats

and 28 S beats are misclassified as V beats. The four 5-beat

intervals from the test section of this patient’s ECG record are

shown in Fig. 5. Such anomalies shown in the plots on N and

S beats do not in fact exist in the training dataset of this patient,

and, hence, the classifier can easily misclassify them. Particu-

larly, the plot in the bottom-left was misclassified as a V beat

due to its morphological anomaly that was learned as a V beat,

and the S beat in the bottom-right was misclassified as N beat

due to its strong resemblance to the pattern of N beats. This is

why, the selection of the common data is of utmost importance

and rather than random, the selection should be performed

with care to cover as much representative beats as possible to

minimize such an inevitable source of classification errors.

In the next section,we shall test the robustness of the proposed

approach against the variations of the signal resolution along

with the network configuration and raw data representation to

validate whether the performance can significantly deteriorate.

C. Robustness

Over each dataset partitioning, we evaluate the proposed ap-

proach by varying the beat resolution (64 versus 128 samples)

along with the CNN parameters and also the raw data rep-

resentation (base versus extended). We observed that mostly

comparable performances with the base performance level are

achieved for all measures on both VEB and SVEB classifica-

tion, while the performance drop becomes somewhat signif-

icant (∼8%) only for the positive predictivity of the SVEB
classification. Other measures are usually slightly comparable

with the base performance. It is quite evident that the effects

of such variations over the classification accuracy are usually

insignificant, especially for VEB classification. Therefore, other

raw data, resolutions, and CNN parameter variants can be con-

veniently used within the proposed approach without sacrificing

from the base performance level. The only cost using the base

(128 samples per beat) setting rather than the 64 samples res-

olution is the increased computational complexity due to the

larger 1-D convolutions during both BP and FP. This will be

investigated in detail in next section.

D. Computational Complexity

We implemented the proposed adaptive 1-DCNNusing C++
over MS Visual Studio 2013 in 64 bit. This is a non-GPU

implementation; however, Intel OpenMP API is used to ob-

tain multiprocessing with a shared memory. The experiments

are performed on a computer with I7-4700MQ at 2.4 GHz



IE
E
E

P
ro
o
f

KIRANYAZ et al.: REAL-TIME PATIENT-SPECIFIC ECG CLASSIFICATION BY 1-D CONVOLUTIONAL NEURAL NETWORKS 9

(eight CPUs) and 16-Gb memory. In theory, this should yield to

8× speed improvement, but, in practice, the observed speed

improvement was between 4.8× and 5×.
Considering the baseline implementation (with base raw data

with 128 samples beat resolution), the average time for 1 BP

iteration per beat is about 4.24 msec with this setting. In a sin-

gle CPU implementation, it becomes 21.2 msec. Considering a

complete BP run with maximum 50 iterations over a patient’s

ECG training dataset with maximum 600 beats (maximum 400

patient specific + 200 common), this means that the maximum
time for training would be 600 × 50 × 21.2 msec = 10.6 min.

The average training time for [16] was about 24 min, including

the feature extraction and postprocessing operations. In our im-

plementation with OpenMP, this was less than 2 min per patient,

which is an insignificant time for training the system which will

be performed only once per patient. For the 64 samples beat

resolution, the average time for 1 BP iteration per beat drops

down to 3.93 msec.

The most important advantage of the proposed system is its

significantly low computational cost for the beat classification.

Specifically, for the single-CPU implementation, the total time

for a FP of a single beat to obtain the class vector is about

0.58 and 0.74 msec for 64 and 128 samples beat resolutions,

respectively. Although there is now a significant decrease in the

computational cost for using 64 samples beat resolution, note

that this speed is still more than 1000× faster than the real-time
requirement.

The main limitation of the proposed approach is that the char-

acterization of the crucial anomaly beats such as the S beats. As

discussed earlier, neither the patient specific data nor the com-

mon data that are randomly collected guarantees to represent

such anomaly beats properly, and if they are not included in

the training dataset, the system may entirely or partially fail

to classify them. Furthermore, the proposed approach like the

prior works in this domain do not support incremental or active

learning, which hinders the ability to adapt to the changes of the

patient’s heartbeat patterns.

V. CONCLUSION

In this study, we proposed a patient-specific ECG heartbeat

classifier with an adaptive implementation of 1-D CNNs that are

able to fuse the two major blocks of the traditional ECG classifi-

cation into a single learning body: feature extraction and classi-

fication. Such a compact implementation, for each patient over

a simple CNN, not only negates the necessity to extract hand-

craftedmanual features, or any kind of pre- and post-processing,

also makes it a primary choice for a real-time implementation

for heart monitoring and anomaly detection. Besides the speed

and computational efficiency achieved, the proposed method

only requires 1-D convolutions (multiplications and additions)

that make any hardware implementation simpler and cheaper.

In addition to that, once a dedicated CNN is trained for an indi-

vidual patient, it can solely be used to classify his/her long ECG

records such as Holter registers in a fast and accurate manner.

The results of the classification experiments, which are per-

formed over the benchmarkMIT/BIH arrhythmia database show

Fig. 6. Overview of a sample conventional CNN (top).

that for both test datasets (1 and 2), the base performance level

of the proposed approach in both VEB and SVEB detection is

comparable or better than the competing methods for most of

the measures. Over the entire dataset (dataset 3), it has the high-

est performance measures except the SVEB sensitivity. We also

observed that variations on the beat resolution with different

CNN settings and raw data representations are not degrading

and can be desirable for even lower computational complexity.

As a result, the proposed approach achieves the main design

objectives, i.e., maintaining a fast, robust, and patient-specific

system with a superior classification performance. As a future

work, we are planning to design the hardware implementation

of the proposed approach.

APPENDIX

A. CNN Overview

CNNs are simple feedforward ANNs that are simple models

of mammalian visual cortex and the same themes have been

revealed in the past ten years by the auditory neuroscience that

these same design paradigms can be found in the primary and

belt auditory areas of the cortex in a number of different animals.

Fig. 6 shows a typical CNN structure which is designed for

28 × 28 pixel images. There are subsampling layers between

each convolutional layer, which decimate the so-called feature

maps of the previous layers neurons. In this sample illustration,

the kernel size is set to 5, and the subsampling factors for both

dimensions are set to 2. The input layer has the input image (R,

G, B) color channels as the feature maps, and after sufficient

number of subsampling, the last subsampling layer reaches a

scalar (1-D) neurons. Following, CNNs contain fully connected

layers that have the same structure as the MLPs.

In order to accomplish this setup, there are several parameters

to be set for such typical CNNs: width and height of the input

image, kernel (filter) dimensions at each level (usually fixed

for each level), the topology of the CNN (number of CNN and

MLP hidden layers and number of neurons at each layer), and

subsampling factors at each level (usually fixed for each level).

Moreover, the input image dimensions should be set according to

the number of CNN layers, kernel size, and subsampling factors

so that the output CNN layer can reach to a scalar 1× 1 feature
map. One can only train the CNN, once all these parameters are

properly fixed in advance. To address these drawbacks, we shall

present an adaptive CNN implementation Section III.

B. Conventional BP

1) BP at MLP layers: In our adaptive CNN implementation,

the MLP layers are optional, and if present, the BP operation
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Fig. 7. Three consecutive MLP layers.

starts from the output MLP layer toward the inner layers. Con-

sider a generic MLP illustration in Fig. 7 showing the connec-

tions between three layers, l−1 to l+1 to and from the kth neuron

at layer l. The FP of the outputs at layer l–1 toward the output

of the kth neuron at layer l can be expressed as follows:

xl
k = bl

k +

N l−1
∑

i=1

wl−1
ik yl−1

i and yl
k = f(xl

k ). (17)

Let l = 1 and l = L be the input and output layers, respec-

tively. For an input vector p, and its corresponding output vector,

[yL
1 , . . . ., yL

NL
], let [t1 , . . . ., tNL

] be the target class vector. The
MSE in the output layer can then be expressed as

E = E(yL
1 , . . . ., yL

NL
) =

N
L

∑

i=1

(

yL
i − ti

)2
. (18)

We are interested to find out the derivative of this error with

respect to an individual weight (connected to that neuron, k)

wl−1
ik , and bias of the neuron k, bl

k , so that we can perform

gradient descent method to minimize the error accordingly

∂E

∂wl−1
ik

=
∂E

∂xl
k

∂xl
k

∂wl−1
ik

=
∂E

∂xl
k

yl−1
i

∂E

∂bl
k

=
∂E

∂xl
k

∂xl
k

∂bl
k

=
∂E

∂xl
k

. (19)

Both derivatives depend on the sensitivities of the error to the

input xl
k . These sensitivities are usually called as delta errors.

Let ∆l
k = ∂E

∂x l
k

be the delta error of the kth neuron at layer l.

Now, we can write the delta error by one step BP from the

output of that neuron yl
k :

∆l
k =

∂E

∂xl
k

=
∂E

∂yl
k

∂yl
k

∂xl
k

=
∂E

∂yl
k

f ′(xl
k ). (20)

This means that the moment we found the sensitivities of the

error to the output ∂E
∂y l

k

, we can then find the delta error. For the

output layer l = L, we know both terms

∆L
k =

∂E

∂xL
k

= f ′(xL
k )

(

yL
k − tk

)

. (21)

Fig. 8. Output CNN layer connected to the first MLP layer.

NowFig. 7 considers the output of the previous layer neuron’s

output yl
k , which contributes all the neurons’ input in the next

layer, i.e.,

xl+1
1 = . . . + wl

k1y
l
k + . . .

...

xl+1
i = . . . + wl

kiy
l
k + . . .

...

xl+1
N l + 1

= . . . + wl
kN l + 1

yl
k + . . . . (22)

Therefore, this basically means that the output of the kth

neuron in the previous layer yl
k contributes to the input of the

neurons of the current layer with individual weights wl
ki . With

this in mind, one can write the sensitivities of the error to the

output ∂E
∂y l

k

as follows:

∂E

∂yl
k

=

N l + 1
∑

i=1

∂E

∂xl+1
i

∂xl+1
i

∂yl
k

=

N l + 1
∑

i=1

∆l+1
i wl

ki . (23)

Interestingly, the same weights are now used to BP the delta

errors to the output sensitivity of that neuron, and we already

knowhow to get the delta of that neuron∆l
k , from this sensitivity

(in (20)), which leads to the generic equation of the BP of the

deltas

∆l
k =

∂E

∂xl
k

=
∂E

∂yl
k

f ′(xl
k ) = f ′(xl

k )

N l + 1
∑

i=1

∆l+1
i wl

ki . (24)

This means that the delta of the kth neuron at layer l, ∆l
k ,

will be formed by all deltas of the next layer, ∆l+1
i , weighted

by the connections from k to i, wl
ki . In other words, if the output

of the kth neuron at layer l contributes to a neuron i in the next
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level with a weight wl
ki , then next layer neuron’s delta ∆l+1

i

will contribute with the same weight to form ∆l
k of the neuron

in the previous layer l.

Once all the deltas in each layer are formed by BP, then

weights and bias of each neuron can be updated by the gradient

descent method. Specifically, the delta of the kth neuron at layer

l, ∆l
k will be used to update the bias of that neuron and all

weights of the neurons in the previous layer connected to that

neuron as given in (19)

∂E

∂wl−1
ik

= ∆l
kyl−1

i and
∂E

∂bl
k

= ∆l
k . (25)

In simple words, the sensitivity of the weight connecting the

ith neuron in the previous layer to the kth neuron in the current

layer depends on the output of the previous layer neuron and the

delta of the current layer neuron.

2) BP From the MLP layer to the Output CNN Layer: As

illustrated in Fig. 8, the output layer of CNN is connected to

the first MLP layer, and, hence, the outputs of this layer CNN

neurons are scalars. In other words, sl
k and of course, ∆sl

k are

now all scalars and to achieve this recall that the subsampling

factors ssx and ssy, in this particular layer all are set to the

dimensions of the input map. Similarly, the weights of this CNN

layer neurons wl
ki are also all scalar and instead of convolution,

scalar multiplication is performed as in a regular MLP. So from

MLP layer to the CNN layer, the regular BP is simply performed

as in (23):

∂E

∂sl
k

= ∆sl
k =

N l + 1
∑

i=1

∂E

∂xl+1
i

∂xl+1
i

∂sl
k

=

N l + 1
∑

i=1

∆l+1
i wl

ki . (26)
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Real-Time Patient-Specific ECG Classification

by 1-D Convolutional Neural Networks
Serkan Kiranyaz∗, Turker Ince, and Moncef Gabbouj, Fellow, IEEE

Abstract—Goal: This paper presents a fast and accurate patient-
specific electrocardiogram (ECG) classification and monitoring
system. Methods: An adaptive implementation of 1-D convolutional
neural networks (CNNs) is inherently used to fuse the two ma-
jor blocks of the ECG classification into a single learning body:
feature extraction and classification. Therefore, for each patient,
an individual and simple CNN will be trained by using relatively
small common and patient-specific training data, and thus, such
patient-specific feature extraction ability can further improve the
classification performance. Since this also negates the necessity to
extract hand-crafted manual features, once a dedicated CNN is
trained for a particular patient, it can solely be used to classify
possibly long ECG data stream in a fast and accurate manner or
alternatively, such a solution can conveniently be used for real-time
ECG monitoring and early alert system on a light-weight wearable
device. Results: The results over the MIT-BIH arrhythmia bench-
mark database demonstrate that the proposed solution achieves
a superior classification performance than most of the state-of-
the-art methods for the detection of ventricular ectopic beats and
supraventricular ectopic beats. Conclusion: Besides the speed and
computational efficiency achieved, once a dedicated CNN is trained
for an individual patient, it can solely be used to classify his/her
long ECG records such as Holter registers in a fast and accurate
manner. Significance: Due to its simple and parameter invariant
nature, the proposed system is highly generic, and, thus, applicable
to any ECG dataset.

Index Terms—Convolutional neural networks (CNNs), patient-
specific ECG classification, real-time heart monitoring.

I. INTRODUCTION

D
ESPITE the easiness of acquiring the data, there are still

challenges ahead of us in order to extract reliable informa-

tion from biomedical signals. Each heartbeat in the cardiac cycle

shows the time evolution of the heart’s electrical activity, which

is made up of distinct electrical depolarization-repolarization

patterns of the heart. For an expert cardiologist, any anomaly

over the heart rate or rhythm or change in themorphological pat-

tern over a recorded ECGwaveform can easily be detected as an

indication of an arrhythmia. However, this can turn out to be very

challenging task for an automatic computerized system due to

several reasons. Certain contaminations of biomedical signals to
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physiological artefact and external noise as well as imbalanced

classes among biomedical signals (e.g., N- and S-type beats in

an ECG signal) make the system’s performance and accuracy

significantly varying from patient to patient. Particularly, the

time-varying dynamics and the morphological characteristics

of ECG signals show significant variations for different patients

and under different temporal and physical conditions. Even for

the ECG of a healthy subject, which appears to be determin-

istic, the shapes of QRS complex, P waves, and R–R intervals

will not be the same from one beat to the other under different

circumstances [1].

There have been several methods for generic and fully auto-

matic ECG classification based on signal processing techniques,

such as frequency analysis [2], wavelet transform [3] and filter

banks [4], statistical [5] and heuristic approaches [6], hidden

Markov models [7], support vector machines [8], artificial neu-

ral networks (ANNs) [9], and mixture-of-experts method [10].

Generally speaking, they have not performed well in practice

due to the aforementioned interpatient variations of the ECG

signals, and thus, they usually exhibit a common drawback of

having an inconsistent performance when, for instance, classi-

fying a new patient’s ECG signal. This makes them unreliable

to be widely used clinically or in practice, and they tend to

have high variations in their accuracy and efficiency for larger

databases [11], [12].

Another severe problem is the lack of application of the com-

mon practice when evaluating and testing a particular method

over a benchmark dataset. For this purpose, the Association for

the Advancement of Medical Instrumentation (AAMI) provides

standards and recommended practices for performance results

of automated arrhythmia detection algorithms [13]. However,

among many methods in the literature, only few [10], [14]–[18]

have in fact used the AAMI standards along with the complete

data from the benchmark MIT-BIH arrhythmia database [22].

Among all, only few of them with a patient-specific design [10],

[12], [15]–[18] have, in particular, demonstrated significant per-

formance improvements over the automatic and generic ECG

classificationmethods thanks to their ability to adapt or optimize

the classifier body according to each patient’s ECG signal.

The aforementioned patient-specific ECG classification

systems have a common approach with two major operations:

feature extraction and training classification over the extracted

features. They demonstrated that the ECG classification perfor-

mance strongly depends on the characterization power of the

features extracted from the ECG data. In the ECG classifica-

tion literature, a vast number of features, their combinations,

and feature selection approaches have been proposed [20]. In

a former work, Hermite transform coefficients [15] achieved

0018-9294 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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such a performance that is significantly higher than the others.

Due to its time–frequency localization properties, the wavelet

transform proves to be an efficient tool for analyzing nonsta-

tionary ECG signals [19]. In our prior work, Kiranyaz et al.

[16], [17] that achieved superior performance than [15], we

used translation-invariant dyadic wavelet transform to extract

morphological features, and in order to avoid the well-known

“Curse of Dimensionality” phenomenon and to significantly

reduce redundancies in such a high-dimensional data space,

the dimension of the input feature vectors has further been re-

duced by using principal component analysis (PCA). The lower

dimensional morphological feature vector was then combined

with two critical temporal features to form the final feature vec-

tor. However, using such fixed and hand-crafted features may

not represent the characteristics of the underlying signal in an

optimal way and obviously this is against the philosophy of a

“patient-specific” approach since the same set of features will be

used for all patients under all circumstances. The true “patient-

specific” solution indeed requires the design of the best possible

features for each individual ECG data. Moreover, extracting

several features, especially in the transform domains along with

the postprocessing methods such as PCA may significantly in-

crease the computational complexity of the overall process, and

this may hinder them from the usage in light-weight applica-

tions (e.g., mobile or wearable health monitoring devices) or for

the classification of large ECG records such as Holter registers.

In order to address such deficiencies and drawbacks, in this

paper, we propose a novel ECG classification approach based on

adaptive 1-D convolutional neural networks (CNNs). CNNs are

hierarchical neural networks whose convolutional layers alter-

nate with subsampling layers, reminiscent of simple and com-

plex cells in the human visual cortex [21], following with a fully

connected layers, which are identical to multilayer perceptrons

(MLP). They primarily mimic the human visual system, which

can efficiently recognize the patterns and structures (e.g., ob-

jects) in a visual scenery. CNNs are now commonly used for the

“deep learning” tasks, such as object recognition in large image

achieveswhile achieving the state-of-the-art performances [24]–

[26]. To our knowledge, this is the first study, where they are

used over 1-D signals, in particular, for the purpose of ECG clas-

sification and anomaly detection. With the proposed adaptation

over the traditional CNNs, the proposed approach can classify

each heart beat with any sampling rate; therefore, voiding the

need for anymanual feature extraction and postprocessing.With

the proper training, the convolutional layers of CNNs can learn

to extract patient-specific features, while the MLP layers per-

form the classification task to produce the final class vectors of

each beat. With the limited training data as proposed in [10] and

[14]–[17], we shall demonstrate that simple CNNs will suffice

to achieve a superior classification performance rather than the

complex ones that are commonly used for deep learning tasks.

As a result, simple 1-D CNNs are easier to train with only few

dozens of back-propagation (BP) epochs, and can, thus, per-

form the classification task with utmost speed (requiring only

few hundreds of 1-D convolutions). This makes them a perfect

choice for real-time ECG monitoring and early alert system on

light-weight devices. An illustration of the proposed approach

is shown in Fig. 1. Finally, we aim to achieve a high level of

robustnesswith respect to the variations of the dataset, since the

proposed system is designed with a minimum set of parameters

and manual settings thanks to the combined learner for feature

extraction and classification.

The rest of this paper is organized as follows. Section II

outlines the ECG dataset used in this study, and provides a

detailed description of the possible raw data representations

for the proposed patient-specific heartbeat classification system.

The adaptive 1-D CNNs along with the BP training method

are presented in Section III. In Section IV, the performance

and robustness of the proposed approach are evaluated over the

MIT/BIH arrhythmia database using the standard performance

metrics, and the results are compared with the previous state-

of-the-art works. Finally, Section V concludes this paper.

II. ECG DATA PROCESSING

In this study, ECG datasets from the MIT/BIH arrhythmia

database [22] are used for the performance evaluation of the pro-

posed patient-specific ECG approach. This benchmark database

contains 48 records, each containing two-channel ECG signals

for 30-min duration selected from 24-h recordings of 47 indi-

viduals. Continuous ECG signals are bandpass filtered at 0.1–

100 Hz and then digitized at 360 Hz. The database contains an-

notation for both timing information and beat class information

verified by independent experts. In this study, we followed the

identical data partitioning as in [16] and [17] so as to comply

with the AAMI ECAR-1987 recommended practice [13]. We

used 44 records from the MIT/BIH arrhythmia database, ex-

cluding four records, which contain paced heartbeats. The first

20 records (numbered in the range of 100–124), which include

representative samples of routine clinical recordings, are used to

select representative beats to be included in the common training

data. The remaining 24 records (numbered in the range of 200–

234) contain uncommon but clinically significant arrhythmias,

such as ventricular, junctional, and supraventricular arrhythmias

[27]. A total of 83648 beats from all 44 records are used as test

patterns for performance evaluation. AAMI recommends that

each ECG beat be classified into the following five heartbeat

types: N (beats originating in the sinus mode), S (supraven-

tricular ectopic beats), V (ventricular ectopic beats), F (fusion

beats), and Q (unclassifiable beats). For all records, we used the

modified-lead II signals, and utilized the labels to locate beats

in ECG data. The beat detection process is beyond the scope

of this paper, as many highly accurate (> 99%) beat detection

algorithms have been reported in the literature [19], [23].

The raw data of each beat are represented by 64 or 128 sam-

ples by downsampling where the latter is intended for the evalu-

ation of the higher resolution data representation. As illustrated

in Fig. 1, in order to learn the morphological structure of the

beat, equal number of samples from each side from the R (cen-

ter) point of the beat are fed into a neuron of the CNN’s in-

put layer. In order to learn the temporal characteristics of each

beat, a beat trio is formed from its neighbor beats, and is fed

into another neuron at the input layer. Therefore, the differ-

ence in timing information of the center beat together with its
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Fig. 1. Overview of the proposed approach in training (offline) and real-time classification and monitoring phases.

neighbors in the beat-trio formation can indicate timing infor-

mation related ECG anomalies such as the presence of an APC

(S) beat. This is the base representation of each beat’s raw data

and on top of this, FFT of each beat (both magnitude and phase)

will also be considered as the extended raw data representation

in the frequency domain. The purpose is to evaluate the perfor-

mance gain—if any—obtained by such extension in raw-data

representation.

The data used for training the individual patient’s classifier

consist of two parts: global (common to each patient) and local

(patient-specific) training patterns. While patient-specific data

contain the first 5-min segment of each patient’s ECG record

and is used as a part of the training data to perform patient

adaptation, the global dataset contains a relatively small num-

ber of representative beats from each class in the training files,

and helps the classifier learn other arrhythmia patterns that are

not included in the patient-specific data. This practice conforms

to the AAMI recommended procedure allowing the usage of at

most 5-min section from the beginning of each patient’s record-

ing for training [13].

III. ADAPTIVE 1-D CNNS

As mentioned earlier, adaptive 1-D CNNs are used for both

feature extraction and classification of the raw ECG data from

each individual patient in the database. In Appendix A, we

introduced an overview of the traditional CNNs developed for

a 2-D image classification. Accordingly, we shall present the

design of our adaptive CNNs in accordance with the traditional

CNNs in 2-D and formulate its BP training. Finally, we shall

highlight the changes and modifications needed for 1-D CNNs

from their 2-D counterparts along with the BP formulations.

To simplify the CNN analogy and to have the freedom of

any input layer dimension independent from the CNN parame-

ters, the neurons of the hidden CNN layers are extended such

that they are capable of both convolution and downsampling as

shown in Fig. 2. This implementation also allows the ability of a

“CNN-only” design without theMLP layers. For the illustration

purpose, we assume 3× 3 kernels (Kx = Ky = 3) for all CNN
layers in the figure; however, different kernel sizes can also be

assigned if desired. The final output of the kth neuron at layer

l, sl
k , is, therefore, the subsampled version of the intermediate

output yl
k . During the forward propagation (FP), the input map

of the next layer neuron will be obtained by the cumulation of

the final output maps of the previous layer neurons convolved

with their individual kernels as follows:

xl
k = bl

k +

N l−1
∑

i=1

conv2D(wl−1
ik , sl−1

i ) (1)

where conv2D (.,.) is a regular 2-D convolution without zero

padding on the boundaries, xl
k is the input, b

l
k is the bias of the

kth neuron at layer l, and sl−1
i is the output of the ith neuron

at layer l–1. wl−1
ik is the kernel (weight) from the ith neuron at

layer l–1 to the kth neuron at layer l. To accomplish BP training,

there are three more elements that are stored for each neuron:

the delta error ∆l
k , downsampled delta error ∆l

sk , and, finally,

the derivative of the intermediate output f ′(xl
k ), all of which

will be explained in the next section.
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Fig. 2. Adaptive CNN implementation.

We aim that the number of hidden CNN layers can be set

to any number. This ability is possible in this implementation

because the subsampling factor of the output CNN layer (the

hidden CNN layer just before the first MLP layer) is automat-

ically set to the dimensions of its input map, e.g., in Fig. 2, if

the layer l + 1 would be the output CNN layer, then the sub-

sampling factors for that layer will be ssx = ssy = 8 since the
input map dimension is 8× 8 in this sample illustration. Besides
the subsampling, note that the dimension of the input maps will

gradually decrease due to the convolution without zero padding,

i.e., in Fig. 2, the dimension of the neuron output is 22 × 22 at
the layer l – 1 that is reduced to 20× 20 at the layer l. As a result

of this, the dimension of the input maps of the current layer is

reduced by (Kx–1, Ky–1), where Kx and Ky are the width and

height of the kernel, respectively.

A. Intra-BP Within a CNN Neuron:∆l
k ←− ∆sl

k

The BP among MLP layers and from the first MLP layer to

the output CNN layer is covered in Appendix B. Once the first

BP is performed from the next layer, l + 1, to the current layer,
l, then we can further BP it to the input delta. Let zero order

upsampled map be: usl
k = upssx,ssy (sl

k ), then one can write

∆l
k =

∂E

∂xl
k

=
∂E

∂yl
k

∂yl
k

∂xl
k

=
∂E

∂usl
k

∂usl
k

∂yl
k

f ′(xl
k )

= up(∆sl
k )β f ′(xl

k ) (2)

where β = (ssx.ssy)−1
since each pixel of sl

k was obtained by

averaging ssx.ssy number of pixels of the intermediate output

yl
k . If maximum pooling is used instead of averaging, then (2)

should be adapted accordingly.

B. Inter-BP Among CNN Layers: ∆sl
k

∑

←−−−∆l+1
l

Recall the basic rule of BP: if the output of the kth neuron at

layer l, contributes a neuron i in the next level with a weight,

wl
ki , that next layer neuron’s delta, ∆

l+1
ı , will contribute with

the same weight to form ∆l
kof the neuron in the previous layer

l. This means

∂E

∂sl
k

= ∆sl
k

∑

←−−−∆l+1
ı ∀i ∈ {1, Nl+1} (3)

Specifically

∂E

∂sl
k

= ∆sl
k =

N l + 1
∑

i=1

∂E

∂xl+1
i

∂xl+1
i

∂sl
k

=

N l + 1
∑

i=1

∆l+1
ı

∂xl+1
i

∂sl
k

(4)

where

xl+1
i = . . . + sl

k
∗wl

ki + · · · (5)

where “∗” is the regular conv2D(.,.) operator without zero
padding. It is obviously hard to compute the derivative directly

from the 2-D convolution. Instead let us focus on the contribu-

tion of a single output pixel,sl
k (m,n), to the pixels of the next

layer map, xl+1
i (m,n), assuming a 3 × 3 kernel

xl+1
i (m − 1, n − 1) = . . . + sl

k (m,n).wl
ki(2, 2) + . . .

xl+1
i (m − 1, n) = . . . + sl

k (m,n).wl
ki(2, 1) + . . .

. . . . . .

xl+1
i (m + 1, n + 1) = . . . + sl

k (m,n).wl
ki(0, 0) + . . . (6)

This is illustrated in Fig. 3, where the role of an output pixel,

sl
k (m,n), over two pixels of the next layer’s input neuron’s
pixels xl+1

i (m − 1, n − 1)and xl+1
i (m + 1, n + 1) can be seen.

Considering the pixel as a MLP neuron connected to other

MLP neurons in the next layer, according to the basic rule of
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Fig. 3. Single pixel’s contribution of the output sl
k
(m, n) to the two pixels of

the xl+1
i

using a 3 × 3 kernel.

BP one can then easily write the delta of sl
k (m,n) as

∂E

∂sl
k

(m,n) = ∆sl
k (m,n)

=

N l + 1
∑

i=1

(

1
∑

r=−1

1
∑

t=−1

∆l+1
ı (m + r, n + t)

·wl
ki(1 − r, 1 − t)

)

(7)

generalizing it for all pixels of the ∆sl
k yields

∆sl
k =

N l + 1
∑

i=1

conv2Dz
(

∆l+1
ı , rot180(wl

ki)
)

(8)

where rot180(.) rotates the kernel, wl
ki , 180°, and then

conv2Dz(.,.) performs a full convolution with zero padding by

(Kx–1, Ky–1) zeros to each boundary of the ∆l+1
ı in order to

achieve equal dimensions (width and height) for∆sl
k and∆l+1

ı

with the sl
k .

C. Computation of the Weight (Kernel) and Bias Sensitivities

As in the regular BP on MLPs, the delta of the ith neuron at

layer l + 1, ∆l+1
i will be used to update the bias of that neuron,

and all weights of the neurons in the previous layer connected

to that neuron as given in (19):

xl+1
i = bl+1

ı + · · · + yl
kwl

ki + · · ·

∴

∂E

∂wl
ki

= yl
k ∆l+1

i and
∂E

∂bl+1
ı

= ∆l+1
i . (9)

Recall the update rule: The sensitivity of the weight connect-

ing the kth neuron in the current layer to the ith neuron in the

next layer depends on the output of the current layer neuron,

and the delta of the next layer neuron. For CNN layer neurons,

we need to follow a similar approach to find out weight and bias

sensitivities. Fig. 4 illustrates the convolution of the output of

the current layer neuron sl
k and kernel w

l
ki to form the input of

the ith neuron xl+1
i at the next layer l + 1.

So now, we can focus on the contribution of each kernel ele-

ment over the output. The following expressions can be written

Fig. 4. Convolution of the output of the current layer neuron sl
k
and kernel

w l
k i
to form the input of the ith neuron xl+1

i
at the next layer l + 1.

for the sample 2-D convolution shown in Fig. 4:

xl+1
i (0, 0) = · · · + wl

ki(0, 0)sl
k (0, 0) + wl

ki(0, 1)sl
k (0, 1)

+wl
ki(1, 0)sl

k (1, 0) + · · ·

xl+1
i (0, 1) = · · · + wl

ki(0, 0)sl
k (0, 1) + wl

ki(0, 1)sl
k (0, 2)

+wl
ki(1, 0)sl

k (1, 1) + · · ·

xl+1
i (1, 0) = · · · + wl

ki(0, 0)sl
k (1, 0) + wl

ki(0, 1)sl
k (1, 1)

+wl
ki(1, 0)sl

k (2, 0) + · · ·

xl+1
i (m,n) = · · · + wl

ki(0, 0)sl
k (m,n) + wl

ki(0, 1)

×sl
k (m,n + 1) + wl

ki(1, 0)sl
k (m + 1, n) + · · ·

xl+1
i (m,n) =

1
∑

r=−1

1
∑

t=−1

wl
ki(r + 1, t + 1)

×sl
k (m + r + 1, n + t + 1). (10)

Since each weight (kernel) element is used (shared) in com-

mon to form each neuron input, xl+1
i (m,n), the derivative will

be the cumulation of delta-output product for all pixels, i.e.,

∂E

∂wl
ki(r, t)

=
∑

m

∑

n

∆l+1
i (m,n)sl

k (m + r, n + t)

⇒
∂E

∂wl
ki

= conv2D(sl
k ,∆l+1

i ). (11)

Similarly, the bias of this neuron, bl
k , contributes to all pixels

in the image (same bias shared among all pixels), so its sen-

sitivity will be the cumulation of individual pixel sensitivities

i.e.,

∂E

∂bl
k

=
∑

m

∑

n

∂E

∂xl
k (m,n)

∂xl
k (m,n)

∂bl
k

=
∑

m

∑

n

∆l
k (m,n). (12)

As a result, the iterative flow of the BP can be stated as

follows.

1) Initialize weights [usually randomly, U(–a, a)].

2) For each BP iteration DO:

a) For each item (or a group of items or all items) in

the dataset, DO:
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i) FP: FP from the input layer to the output

layer to find outputs of each neuron at each

layer yl
i ∀i ∈ [1, Nl ] and ∀l ∈ [1, L].

ii) BP: Compute delta error at the output layer

and BP it to first hidden layer to com-

pute the delta errors∆l
k ∀k ∈ [1, Nl ] and ∀l

∈ [2, L − 1].
iii) PP: Postprocess to compute the weight and

bias sensitivities using (11), (12), and (25).

iv) Update: Update the weights and biases with

the (cumulation of) sensitivities found in (c)

scaled with the learning factor ε:

wl−1
ik (t + 1) = wl−1

ik (t) − ε
∂E

∂wl−1
ik

bl
k (t + 1) = bl

k (t) − ε
∂E

∂bl
k

(13)

B. Changes for the Adaptive 1-D CNN Implementation

There are only some minor differences between the 2-D and

1-D CNNs. The main difference is obviously the 1-D arrays

used in each neuron for its kernels (weights), input and output

elements for both FP and BP rather than 2-D matrices. There-

fore, during both FP and BP runs, 1-D array manipulations such

as conv1D and reverse will be performed instead of 2-D matrix

operations, such as conv2D and rot180. The 2-D parameters for

kernel size (Kx, Ky) and subsampling (ssx, ssy) are now single

scalars K and ss, respectively. If present, the MLP layers of the

1-D CNN are identical to the 2-D counterpart, and, therefore,

same equations can be used for both FP and BP on those layers.

The expression of the 2-D FP given in (26) can now be written

as

xl
k = bl

k +

N l−1
∑

i=1

conv1D(wl−1
ik , sl−1

i ). (14)

The inter-BP delta error of the output sl
k given in (8) can now

be expressed for 1-D as

∆sl
k =

N l + 1
∑

i=1

conv1Dz
(

∆l+1
ı , rev(wl

ki)
)

(15)

where rev(.) reverses the array, and conv1Dz(.,.) performs full

convolution in 1-D with K–1 zero padding. The intra-BP is also

identical to the one for 2-D CNNs, as expressed in (2), while

β = ss−1 and a 1-D upsampling operator is now used. Finally,

the weight and bias sensitivities given in (11) and (12) for 2-D

can now be expressed for 1-D CNNs as

∂E

∂wl
ki

= conv1D(sl
k ,∆l+1

i )

∂E

∂bl
k

=
∑

n

∆l
k (n). (16)

IV. EXPERIMENTAL RESULTS

In this section, we shall first present the experimental setup

for the test and evaluation of the proposed patient-specific ECG

classification approach. We shall then present the overall results

obtained from the ECG classification experiments and perform

comparative evaluations against several state-of-the-art tech-

niques in this field. The robustness of the proposed system

against variations of signal resolution (hence, the CNN con-

figuration) and raw data representation will then be evaluated.

Finally, the computational complexity of the proposed method

for both training and classification will be evaluated in detail.

A. Experimental Setup

As mentioned earlier, in order to evaluate the effects of dif-

ferent resolutions and raw data representations particularly in

the transform domain, we used two alternatives for each case.

The beats are represented in both 64 and 128 samples centered

on the R-peak, and we used the FFT representation (magnitude

and phase) of each beat as in the extended data representation.

We purposefully used a simple 1-D CNN in all experiments

with only three CNN layers and two MLP layers, in order to

achieve the utmost computational efficiency for both training

and particularly for real-time classification. On top of this, we

aim to demonstrate that deep learners are not indeed needed

to achieve a superior ECG classification performance. The

1-D CNN used in all experiments has 32 and 16 neurons on

the first- and second-hidden CNN layers and ten neurons on the

hiddenMLP layer. The output (MLP) layer size is 5 which is the

number of beat classes and the input (CNN) layer size is either

2 (base) or 4 (extended) according to the choice of raw data

representation. For 64 and 128 sample beat representations, the

kernel sizes are set to 9 and 15, and the subsampling factors are

set to 4 and 6, respectively. As a result, in the proposed adaptive

CNN implementation, the subsampling factors for the last CNN

layers are automatically set to 6 and 5, respectively.

For all experiments, we employ a shallow training: the maxi-

mum number of BP iterations is set to 50, and another stopping

criterion is the minimum train classification error level that is

set to 3% to prevent overfitting. Therefore, the training will ter-

minate if either of the criteria is met.We initially set the learning

factor ε as 0.001, and applied a global adaptation during each

BP iteration; if the train mean-squared error (MSE) decreases

in the current iteration, we slightly increase ε by 5%; otherwise,

we reduce it by 30% for the next iteration. As BP is a deter-

ministic gradient-descent optimization technique, which makes

it quite dependent to the initial (random) setting of the network

parameters (kernels, weights, and biases), we performed ten in-

dividual BP runs for each patient in the database, and the average

classification performance is reported.

B. Base Classification Performance Evaluation

We performed classification experiments on 44 records of the

MIT/BIH arrhythmia database, containing a total of 100389

beats to be classified into five heartbeat types according to

the AAMI recommendation [13]. For training the 1-D CNNs,

both common and patient-specific training patterns are used; the

common part of the training dataset contains a total of 245 rep-

resentative beats, including 75 from each type-N, type-S, and

type-V beats, and all (13) type-F and (7) type-Q beats, randomly



IE
E
E

P
ro
o
f

KIRANYAZ et al.: REAL-TIME PATIENT-SPECIFIC ECG CLASSIFICATION BY 1-D CONVOLUTIONAL NEURAL NETWORKS 7

TABLE I
CONFUSIONMATRICES OF THE ECG BEAT CLASSIFICATION RESULTS FOR ALL
44 RECORDS (BOTTOM) AND FOR THE 24 TEST RECORDS (TOP) IN THE

MIT/BIH ARRHYTHMIA DATABASE

Classification Result

Ground Truth N S V F Q

N 40963F (40532) 807 (776) 350 (382) 67 (56) 4 (20)

S 625 (672) 1440 (1441) 149 (197) 14 (5) 1 (5)

V 114 (392) 69 (299) 4247 (4022) 39 (75) 2 (32)

F 82 (164) 4 (26) 70 (46) 497 (378) 0 (2)

Q 6 (6) 2 (0) 5 (1) 0 (1) 0 (0)

Classification Result

Ground Truth N S V F Q

N 73539 (73019) 824 (991) 368 (513) 69 (98) 5 (29)

S 837 (686) 1568 (1568) 178 (205) 15 (5) 2 (6)

V 230 (462) 72 (333) 5277 (4993) 39 (79) 4 (32)

F 92 (168) 4 (28) 73 (48) 503 (379) 0 (2)

Q 31 (8) 2 (1) 5 (3) 0 (1) 4 (1)

The previous results from [16] are shown in parentheses.

TABLE II
VEB AND SVEB CLASSIFICATION PERFORMANCE OF THE PROPOSEDMETHOD
AND COMPARISONWITH FOURMAJOR ALGORITHMS FROM THE LITERATURE

Methods VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Hu et al. [10]1 94.8 78.9 96.8 75.8 N/A N/A N/A N/A

Jiang and Kong [15] 1 98.8 94.3 99.4 95.8 97.5 74.9 98.8 78.8

Ince et al. [16]1 97.9 90.3 98.8 92.2 96.1 81.8 98.5 63.4

Proposed1 98.9 95.9 99.4 96.2 96.4 68.8 99.5 79.2

Jiang and Kong [15] 2 98.1 86.6 99.3 93.3 96.6 50.6 98.8 67.9

Ince et al. [16]2 97.6 83.4 98.1 87.4 96.1 62.1 98.5 56.7

Proposed2 98.6 95 98.1 89.5 96.4 64.6 98.6 62.1

Ince et al. [16] 3 98.3 84.6 98.7 87.4 97.4 63.5 99.0 53.7

Proposed3 99 93.9 98.9 90.6 97.6 60.3 99.2 63.5

Best results are highlighted.
1The comparison results are based on 11 common recordings for VEB detection and

14 common recordings for SVEB detection.
2The VEB and SVEB detection results are compared for 24 common testing records

only.
3The VEB and SVEB detection results of the proposed system for all training and

testing records.

sampled from each class from the first 20 records (picked from

the range 100 to 124) of the MIT/BIH database, and the patient-

specific training data include the beats from the first 5 min of the

corresponding patient’s ECG record. Patient-specific 1-D CNN

networks are trained with a total of 245 common training beats,

and a variable number of patient-specific beats depending on

the patient’s heart rate, so only less than 1% of the total beats

are used for training. The remaining beats (25 min) of each

record, in which 24 out of 44 records are completely new to the

classifier, are used as test patterns for performance evaluation.

Classification performance is measured using the four stan-

dard metrics found in the literature [10]: classification accuracy

(Acc), sensitivity (Sen), specificity (Spe), and positive predictiv-

ity (Ppr). While accuracy measures the overall system perfor-

mance over all classes of beats, the other metrics are specific to

each class, and theymeasure the ability of the classification algo-

TABLE III
CONFUSIONMATRIX FOR THE ECG BEAT CLASSIFICATION OF THE PATIENT 202

Classification Result

Ground Truth N S V F Q

N 1435 258 10 0 0

S 11 15 28 0 0

V 4 1 10 0 0

F 1 0 0 0 0

Q 0 0 0 0 0

rithm to distinguish certain events (i.e., VEBs or SVEBs) from

nonevents (i.e., non-VEBs or non-SVEBs). The respective def-

initions of these four common metrics using true positive (TP),

true negative (TN), false positive (FP), and false negative (FN)

are as follows: Accuracy is the ratio of the number of correctly

classified patterns to the total number of patterns classified, Acc

= (TP+TN)/(TP+TN+FP+FN); Sensitivity is the rate of cor-

rectly classified events among all events, Sen = TP/(TP+FN);

Specificity is the rate of correctly classified nonevents among

all nonevents, Spe = TN/(TN+FP); and Positive Predictivity is

the rate of correctly classified events in all detected events, Ppr

= TP/(TP+FP). Since there is a large variation in the number

of beats from different classes in the training/testing data (i.e.,

39465/50354 type-N, 1277/5716 type-V, and 190/2571 type-S

beats), sensitivity, specificity, and positive predictivity are more

relevant performance criteria formedical diagnosis applications.

For the base performance evaluation, we shall consider the

base raw data represented by 128 samples (both the single beat

and the beat trio). The results of the other three alternatives

from the extended raw data and 64 samples representation over

the other 1-D CNN setup will be considered to demonstrate the

robustness of the system against the variations on raw data rep-

resentations, signal resolution, and CNN configurations. For the

proposed approach and the previous state-of-the-art method in

[16], Table I presents the confusion matrices of ECG beat clas-

sification results for all 44 records and the 24 records of the test

dataset. To perform a more extensive and accurate comparative

performance evaluation, the base performance of the proposed

system is compared with the three existing algorithms, [10],

[15], and [16], all of which comply with the AAMI standards.

Although P. de Chazal in [12] and [14] also comply with the

AAMI standards, since they used different training and test data,

it is not possible to directly compare their results with the pro-

posedmethod. In accordance with the AAMI recommendations,

the problem of VEB and SVEB detection is considered individ-

ually and results are summarized in Table II. The benchmark

MIT/BIH database is partitioned into three evaluation datasets.

For VEB detection, the dataset 1 contains 11 test recordings

(200, 202, 210, 213, 214, 219, 221, 228, 231, 233, and 234),

and for SVEB detection, comparison results are based on 14

common recordings (with the addition of records 212, 222, and

232). Dataset 1 is common for all competing methods. Dataset

2 is the test partition of the benchmark database containing 24

records (200 and onward). Three methods (the proposed, [15],

and [16]) are tested on this dataset. Finally, the dataset 3 is the
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Fig. 5. Four 5-beats interval from the test section of the patient 202’s ECG record with the ground truth labels.

entire database with all records over which two methods, the

proposed and [16] are tested.

Several interesting observations can be made from the results

in Table II. First, for SVEB detection, sensitivity and positive

predictivity rates are comparably lower than VEB detection,

while a high-specificity performance is achieved. The reason

for the worse classifier performance in detecting SVEBs is that

SVEB class is underrepresented in the training data, and, hence,

more SVEB beats are misclassified as normal beats. Moreover,

on several patients, particularly on the test dataset (dataset 2)

both the patient specific data from the first 5-min interval and the

common data of 200 beats extracted randomly from the training

dataset do not successfully characterize most of the S beats and

some of the V beats (e.g., patients 201, 202, 209, 222, and 232).

Take, for instance, the confusion matrix given for patient 202 in

Table III, where 258 normal beats are misclassified as S beats

and 28 S beats are misclassified as V beats. The four 5-beat

intervals from the test section of this patient’s ECG record are

shown in Fig. 5. Such anomalies shown in the plots on N and

S beats do not in fact exist in the training dataset of this patient,

and, hence, the classifier can easily misclassify them. Particu-

larly, the plot in the bottom-left was misclassified as a V beat

due to its morphological anomaly that was learned as a V beat,

and the S beat in the bottom-right was misclassified as N beat

due to its strong resemblance to the pattern of N beats. This is

why, the selection of the common data is of utmost importance

and rather than random, the selection should be performed

with care to cover as much representative beats as possible to

minimize such an inevitable source of classification errors.

In the next section,we shall test the robustness of the proposed

approach against the variations of the signal resolution along

with the network configuration and raw data representation to

validate whether the performance can significantly deteriorate.

C. Robustness

Over each dataset partitioning, we evaluate the proposed ap-

proach by varying the beat resolution (64 versus 128 samples)

along with the CNN parameters and also the raw data rep-

resentation (base versus extended). We observed that mostly

comparable performances with the base performance level are

achieved for all measures on both VEB and SVEB classifica-

tion, while the performance drop becomes somewhat signif-

icant (∼8%) only for the positive predictivity of the SVEB
classification. Other measures are usually slightly comparable

with the base performance. It is quite evident that the effects

of such variations over the classification accuracy are usually

insignificant, especially for VEB classification. Therefore, other

raw data, resolutions, and CNN parameter variants can be con-

veniently used within the proposed approach without sacrificing

from the base performance level. The only cost using the base

(128 samples per beat) setting rather than the 64 samples res-

olution is the increased computational complexity due to the

larger 1-D convolutions during both BP and FP. This will be

investigated in detail in next section.

D. Computational Complexity

We implemented the proposed adaptive 1-DCNNusing C++
over MS Visual Studio 2013 in 64 bit. This is a non-GPU

implementation; however, Intel OpenMP API is used to ob-

tain multiprocessing with a shared memory. The experiments

are performed on a computer with I7-4700MQ at 2.4 GHz
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(eight CPUs) and 16-Gb memory. In theory, this should yield to

8× speed improvement, but, in practice, the observed speed

improvement was between 4.8× and 5×.
Considering the baseline implementation (with base raw data

with 128 samples beat resolution), the average time for 1 BP

iteration per beat is about 4.24 msec with this setting. In a sin-

gle CPU implementation, it becomes 21.2 msec. Considering a

complete BP run with maximum 50 iterations over a patient’s

ECG training dataset with maximum 600 beats (maximum 400

patient specific + 200 common), this means that the maximum
time for training would be 600 × 50 × 21.2 msec = 10.6 min.

The average training time for [16] was about 24 min, including

the feature extraction and postprocessing operations. In our im-

plementation with OpenMP, this was less than 2 min per patient,

which is an insignificant time for training the system which will

be performed only once per patient. For the 64 samples beat

resolution, the average time for 1 BP iteration per beat drops

down to 3.93 msec.

The most important advantage of the proposed system is its

significantly low computational cost for the beat classification.

Specifically, for the single-CPU implementation, the total time

for a FP of a single beat to obtain the class vector is about

0.58 and 0.74 msec for 64 and 128 samples beat resolutions,

respectively. Although there is now a significant decrease in the

computational cost for using 64 samples beat resolution, note

that this speed is still more than 1000× faster than the real-time
requirement.

The main limitation of the proposed approach is that the char-

acterization of the crucial anomaly beats such as the S beats. As

discussed earlier, neither the patient specific data nor the com-

mon data that are randomly collected guarantees to represent

such anomaly beats properly, and if they are not included in

the training dataset, the system may entirely or partially fail

to classify them. Furthermore, the proposed approach like the

prior works in this domain do not support incremental or active

learning, which hinders the ability to adapt to the changes of the

patient’s heartbeat patterns.

V. CONCLUSION

In this study, we proposed a patient-specific ECG heartbeat

classifier with an adaptive implementation of 1-D CNNs that are

able to fuse the two major blocks of the traditional ECG classifi-

cation into a single learning body: feature extraction and classi-

fication. Such a compact implementation, for each patient over

a simple CNN, not only negates the necessity to extract hand-

craftedmanual features, or any kind of pre- and post-processing,

also makes it a primary choice for a real-time implementation

for heart monitoring and anomaly detection. Besides the speed

and computational efficiency achieved, the proposed method

only requires 1-D convolutions (multiplications and additions)

that make any hardware implementation simpler and cheaper.

In addition to that, once a dedicated CNN is trained for an indi-

vidual patient, it can solely be used to classify his/her long ECG

records such as Holter registers in a fast and accurate manner.

The results of the classification experiments, which are per-

formed over the benchmarkMIT/BIH arrhythmia database show

Fig. 6. Overview of a sample conventional CNN (top).

that for both test datasets (1 and 2), the base performance level

of the proposed approach in both VEB and SVEB detection is

comparable or better than the competing methods for most of

the measures. Over the entire dataset (dataset 3), it has the high-

est performance measures except the SVEB sensitivity. We also

observed that variations on the beat resolution with different

CNN settings and raw data representations are not degrading

and can be desirable for even lower computational complexity.

As a result, the proposed approach achieves the main design

objectives, i.e., maintaining a fast, robust, and patient-specific

system with a superior classification performance. As a future

work, we are planning to design the hardware implementation

of the proposed approach.

APPENDIX

A. CNN Overview

CNNs are simple feedforward ANNs that are simple models

of mammalian visual cortex and the same themes have been

revealed in the past ten years by the auditory neuroscience that

these same design paradigms can be found in the primary and

belt auditory areas of the cortex in a number of different animals.

Fig. 6 shows a typical CNN structure which is designed for

28 × 28 pixel images. There are subsampling layers between

each convolutional layer, which decimate the so-called feature

maps of the previous layers neurons. In this sample illustration,

the kernel size is set to 5, and the subsampling factors for both

dimensions are set to 2. The input layer has the input image (R,

G, B) color channels as the feature maps, and after sufficient

number of subsampling, the last subsampling layer reaches a

scalar (1-D) neurons. Following, CNNs contain fully connected

layers that have the same structure as the MLPs.

In order to accomplish this setup, there are several parameters

to be set for such typical CNNs: width and height of the input

image, kernel (filter) dimensions at each level (usually fixed

for each level), the topology of the CNN (number of CNN and

MLP hidden layers and number of neurons at each layer), and

subsampling factors at each level (usually fixed for each level).

Moreover, the input image dimensions should be set according to

the number of CNN layers, kernel size, and subsampling factors

so that the output CNN layer can reach to a scalar 1× 1 feature
map. One can only train the CNN, once all these parameters are

properly fixed in advance. To address these drawbacks, we shall

present an adaptive CNN implementation Section III.

B. Conventional BP

1) BP at MLP layers: In our adaptive CNN implementation,

the MLP layers are optional, and if present, the BP operation
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Fig. 7. Three consecutive MLP layers.

starts from the output MLP layer toward the inner layers. Con-

sider a generic MLP illustration in Fig. 7 showing the connec-

tions between three layers, l−1 to l+1 to and from the kth neuron

at layer l. The FP of the outputs at layer l–1 toward the output

of the kth neuron at layer l can be expressed as follows:

xl
k = bl

k +

N l−1
∑

i=1

wl−1
ik yl−1

i and yl
k = f(xl

k ). (17)

Let l = 1 and l = L be the input and output layers, respec-

tively. For an input vector p, and its corresponding output vector,

[yL
1 , . . . ., yL

NL
], let [t1 , . . . ., tNL

] be the target class vector. The
MSE in the output layer can then be expressed as

E = E(yL
1 , . . . ., yL

NL
) =

N
L

∑

i=1

(

yL
i − ti

)2
. (18)

We are interested to find out the derivative of this error with

respect to an individual weight (connected to that neuron, k)

wl−1
ik , and bias of the neuron k, bl

k , so that we can perform

gradient descent method to minimize the error accordingly

∂E

∂wl−1
ik

=
∂E

∂xl
k

∂xl
k

∂wl−1
ik

=
∂E

∂xl
k

yl−1
i

∂E

∂bl
k

=
∂E

∂xl
k

∂xl
k

∂bl
k

=
∂E

∂xl
k

. (19)

Both derivatives depend on the sensitivities of the error to the

input xl
k . These sensitivities are usually called as delta errors.

Let ∆l
k = ∂E

∂x l
k

be the delta error of the kth neuron at layer l.

Now, we can write the delta error by one step BP from the

output of that neuron yl
k :

∆l
k =

∂E

∂xl
k

=
∂E

∂yl
k

∂yl
k

∂xl
k

=
∂E

∂yl
k

f ′(xl
k ). (20)

This means that the moment we found the sensitivities of the

error to the output ∂E
∂y l

k

, we can then find the delta error. For the

output layer l = L, we know both terms

∆L
k =

∂E

∂xL
k

= f ′(xL
k )

(

yL
k − tk

)

. (21)

Fig. 8. Output CNN layer connected to the first MLP layer.

NowFig. 7 considers the output of the previous layer neuron’s

output yl
k , which contributes all the neurons’ input in the next

layer, i.e.,

xl+1
1 = . . . + wl

k1y
l
k + . . .

...

xl+1
i = . . . + wl

kiy
l
k + . . .

...

xl+1
N l + 1

= . . . + wl
kN l + 1

yl
k + . . . . (22)

Therefore, this basically means that the output of the kth

neuron in the previous layer yl
k contributes to the input of the

neurons of the current layer with individual weights wl
ki . With

this in mind, one can write the sensitivities of the error to the

output ∂E
∂y l

k

as follows:

∂E

∂yl
k

=

N l + 1
∑

i=1

∂E

∂xl+1
i

∂xl+1
i

∂yl
k

=

N l + 1
∑

i=1

∆l+1
i wl

ki . (23)

Interestingly, the same weights are now used to BP the delta

errors to the output sensitivity of that neuron, and we already

knowhow to get the delta of that neuron∆l
k , from this sensitivity

(in (20)), which leads to the generic equation of the BP of the

deltas

∆l
k =

∂E

∂xl
k

=
∂E

∂yl
k

f ′(xl
k ) = f ′(xl

k )

N l + 1
∑

i=1

∆l+1
i wl

ki . (24)

This means that the delta of the kth neuron at layer l, ∆l
k ,

will be formed by all deltas of the next layer, ∆l+1
i , weighted

by the connections from k to i, wl
ki . In other words, if the output

of the kth neuron at layer l contributes to a neuron i in the next
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level with a weight wl
ki , then next layer neuron’s delta ∆l+1

i

will contribute with the same weight to form ∆l
k of the neuron

in the previous layer l.

Once all the deltas in each layer are formed by BP, then

weights and bias of each neuron can be updated by the gradient

descent method. Specifically, the delta of the kth neuron at layer

l, ∆l
k will be used to update the bias of that neuron and all

weights of the neurons in the previous layer connected to that

neuron as given in (19)

∂E

∂wl−1
ik

= ∆l
kyl−1

i and
∂E

∂bl
k

= ∆l
k . (25)

In simple words, the sensitivity of the weight connecting the

ith neuron in the previous layer to the kth neuron in the current

layer depends on the output of the previous layer neuron and the

delta of the current layer neuron.

2) BP From the MLP layer to the Output CNN Layer: As

illustrated in Fig. 8, the output layer of CNN is connected to

the first MLP layer, and, hence, the outputs of this layer CNN

neurons are scalars. In other words, sl
k and of course, ∆sl

k are

now all scalars and to achieve this recall that the subsampling

factors ssx and ssy, in this particular layer all are set to the

dimensions of the input map. Similarly, the weights of this CNN

layer neurons wl
ki are also all scalar and instead of convolution,

scalar multiplication is performed as in a regular MLP. So from

MLP layer to the CNN layer, the regular BP is simply performed

as in (23):

∂E

∂sl
k

= ∆sl
k =

N l + 1
∑

i=1

∂E

∂xl+1
i

∂xl+1
i

∂sl
k

=

N l + 1
∑

i=1

∆l+1
i wl

ki . (26)
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