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a b s t r a c t

The need for solving multi-modal optimization problems in high dimensions is pervasive in many prac-
tical applications. Particle swarm optimization (PSO) is attracting an ever-growing attention and more
than ever it has found many application areas for many challenging optimization problems. It is, however,
a known fact that PSO has a severe drawback in the update of its global best (gbest) particle, which has a
crucial role of guiding the rest of the swarm. In this paper, we propose two efficient solutions to remedy
this problem using a stochastic approximation (SA) technique. In the first approach, gbest is updated
(moved) with respect to a global estimation of the gradient of the underlying (error) surface or function
and hence can avoid getting trapped into a local optimum. The second approach is based on the formation
of an alternative or artificial global best particle, the so-called aGB, which can replace the native gbest
particle for a better guidance, the decision of which is held by a fair competition between the two. For
this purpose we use simultaneous perturbation stochastic approximation (SPSA) for its low cost. Since
SPSA is applied only to the gbest (not to the entire swarm), both approaches result thus in a negligible
overhead cost for the entire PSO process. Both approaches are shown to significantly improve the perfor-
mance of PSO over a wide range of non-linear functions, especially if SPSA parameters are well selected
to fit the problem at hand. A major finding of the paper is that even if the SPSA parameters are not tuned

well, results of SA-driven (SAD) PSO are still better than the best of PSO and SPSA. Since the problem
of poor gbest update persists in the recently proposed extension of PSO, called multi-dimensional PSO
(MD-PSO), both approaches are also integrated into MD-PSO and tested over a set of unsupervised data
clustering applications. As in the basic PSO application, experimental results show that the proposed
approaches significantly improved the quality of the MD-PSO clustering as measured by a validity index

e pro
range
function. Furthermore, th
and applicable to a wide

. Introduction

The Merriam Webster dictionary defines optimization as the
athematical procedures (as finding the maximum of a function)

nvolved in this. More specifically, consider the problem of finding a
oot �* (either minimum or maximum point) of the gradient equa-
ion: g(�) ≡ ∂ L(�)/∂ � = 0 for some differentiable function L : Rp → R1.

hen g is present and L is a differentiable and uni-modal func-
ion, there are powerful deterministic methods for finding the
lobal �*such as traditional steepest descent and Newton-Raphson

ethods. However, in many real problems g cannot be observed

irectly and/or L is multi-modal, in which case the aforementioned
pproaches may be trapped into some deceiving local optima. This
rought the era of the stochastic optimization algorithms, which
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posed approaches are generic as they can be used with other PSO variants
of problems.

© 2010 Elsevier B.V. All rights reserved.

can estimate the gradient and may avoid being trapped into a local
optimum due to their stochastic nature. One of the most popu-
lar stochastic optimization techniques is stochastic approximation
(SA), in particular the form that is called “gradient free” SA. Among
many SA variants proposed by several researchers such as Styblin-
ski and Tang [37], Kushner [25], Gelfand and Mitter [13], and Chin
[6], the one and somewhat different SA application is called simul-
taneous perturbation SA (SPSA) proposed by Spall in 1992 [35]. The
main advantage of SPSA is that it often achieves a much more eco-
nomical operation in terms of loss function evaluations, which are
usually the most computationally intensive part of an optimization
process.

Particle swarm optimization (PSO) was introduced by Kennedy

and Eberhart [20] in 1995 as a population based stochastic search
and optimization process. It is originated from the computer simu-
lation of the individuals (particles or living organisms) in a bird flock
or fish school [42], which basically show a natural behavior when
they search for some target (e.g. food). Henceforth, PSO exhibits

dx.doi.org/10.1016/j.asoc.2010.07.022
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:serkan@cs.tut.fi
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ertain similarities with the other evolutionary algorithms (EAs)
4] such as genetic algorithm (GA) [14], genetic programming (GP)
24], evolution strategies (ES) [5], and evolutionary programming
EP) [11]. The common point of all is that EAs are population based

ethods and they may avoid being trapped in a local optimum;
owever, this is never guaranteed. In a PSO process, a swarm of
articles (or agents), each of which represent a potential solution
o an optimization problem; navigate through the search (or solu-
ion) space. The particles are initially distributed randomly over the
earch space and the goal is to converge to the global optimum of
function or a system. Each particle keeps track of its position in

he search space and its best solution so far achieved. This is the
ersonal best position (the so-called pbest in [20]) and the PSO pro-
ess also keeps track of the global best (GB) solution so far achieved
y the swarm with its particle index (the so-called gbest in [20]).
o during their journey with discrete time iterations, the velocity
f each particle in the next iteration is computed by using the best
osition of the swarm (personal best position of the particle gbest
s the social component), its personal best position (pbest as the
ognitive component), and its current velocity (the memory term).
oth social and cognitive components contribute randomly to the
osition of the particle in the next iteration.

As a stochastic search algorithm in multi-dimensional (MD)
earch space, PSO exhibits some major problems similar to the
forementioned EAs. The first one is due to the fact that any
tochastic optimization technique depends on the parameters of
he optimization problem where it is applied and variation of these
arameters significantly affects the performance of the algorithm.
his problem is a crucial one for PSO where parameter variations
ay result in large performance shifts [26]. The second one is due

o the direct link of the information flow between particles and
best, which then “guides” the rest of the swarm and thus result-
ng in the creation of similar particles with some loss of diversity.
ence this phenomenon increases the likelihood of being trapped

n local optima [32] and it is the main cause of the premature
onvergence problem especially when the search space is of high
imensions [40] and the problem to be optimized is multi-modal
32]. Therefore, at any iteration of a PSO process, gbest is the most
mportant particle; however, it has the poorest update equation,
.e. when a particle becomes gbest, it resides on its personal best
osition (pbest) and thus both social and cognitive components are
ullified in the velocity update equation. Although it guides the
warm during the following iterations, ironically it lacks the nec-
ssary guidance to do so effectively. In that, if gbest is (likely to get)
rapped in a local optimum, so is the rest of the swarm due to the
forementioned direct link of information flow. This deficiency has
een raised in a recent work [22] where an artificial GB particle,
he aGB, is created at each iteration as an alternative to gbest, and
eplaces the native gbest particle as long as it achieves a better fit-
ess score. In that study, it has been shown that such an enhanced
uidance alone is indeed sufficient in most cases to achieve global
onvergence performance on multi-modal functions and even in
igh dimensions. However, the underlying mechanism for creating
he aGB particle, the so-called fractional GB formation (FGBF), is
ot generic in the sense that it is rather problem dependent, which
equires (the estimate of) individual dimensional fitness scores.
his may be quite hard or infeasible for certain problems.

In order to address this drawback efficiently, in this paper we
hall propose two approaches. The first one moves gbest efficiently
r simply put, guides it with respect to the function (or error sur-
ace). The idea behind this is quite simple: since the velocity update

quation of gbest is quite poor, SPSA as a simple yet powerful search
echnique is used to drive it instead. Due to its stochastic nature
he likelihood of getting trapped into a local optimum is further
ecreased and with the SA, gbest is driven according to (an approx-

mation of) the gradient of the function. The second approach has
puting 11 (2011) 2334–2347 2335

a similar idea with the FGBF proposed in [22], i.e. an aGB particle
is created by SPSA this time, which is applied over the personal
best (pbest) position of the gbest particle. The aGB particle will then
guide the swarm instead of gbest if and only if it achieves a better
fitness score than the (personal best position of) gbest. Note that
both approaches only deal with the gbest particle and hence the
internal PSO process remains as is. That is, neither of the proposed
approaches is a PSO variant by itself; rather a solution for the prob-
lem of the original PSO caused by poor gbest update. Furthermore,
we shall demonstrate that the proposed approaches have a negligi-
ble computational cost overhead, e.g. only few percent increase of
the computational complexity, which can be easily compensated
with a slight reduction either in the swarm size or in the iteration
number. Both approaches of SA-driven PSO (SAD PSO) will be tested
and evaluated against the basic PSO (bPSO) over several benchmark
uni- and multi-modal functions in high dimensions. Moreover, they
are also applied to the multi-dimensional extension of PSO, the
MD-PSO technique proposed in [22], which can find the optimum
dimension of the solution space and hence voids the need of fixing
the dimension of the solution space in advance. SAD MD-PSO is then
tested and evaluated against the standalone MD-PSO application
over several data clustering problems where both complexity and
the dimension of the solution space (the true number of clusters)
are varied significantly.

The rest of the paper is organized as follows. Section 2 surveys
the basic PSO (bPSO), MD-PSO methods with the related work in
data clustering. The proposed techniques applied over both PSO
and MD-PSO are presented in Section 3. Section 4 presents the
experimental results over two problem domains, non-linear func-
tion minimization and data clustering. Finally, Section 5 concludes
the paper.

2. Related work

2.1. The basic PSO technique

In the basic PSO method, (bPSO), a swarm of particles flies
through an N-dimensional search space where the position of each
particle represents a potential solution to the optimization prob-
lem. Each particle a in the swarm with S particles, � ={x1, . . ., xa, . . .,
xS}, is represented by the following characteristics:

• xa,j(t): jth dimensional component of the position of particle a, at
time t

• va,j(t) : jth dimensional component of the velocity of
particle a, at time t

• ya,j(t): jth dimensional component of the personal best (pbest)
position of particle a, at time t

• ŷj(t) : jth dimensional component of the global best
position of swarm, at time t

Let f denote the fitness function to be optimized. Without loss
of generality assume that the objective is to find the minimum of f
in N-dimensional space. Then the personal best of particle a can be
updated in iteration t + 1 as,

ya,j(t + 1) =
{

ya,j(t) if f (xa(t + 1)) > f (ya(t))
xa,j(t + 1) else

}
∀j ∈ [1, N]

(1)
Since gbest is the index of the GB particle, then ŷ(t) = ygbest(t) =
arg min

∀i ∈ [1,S]
(f (yi(t))). Then for each iteration in a PSO process, posi-

tional updates are performed for each particle, a ∈ [1, S] and along
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Table 1
Pseudo-code for bPSO algorithm.

bPSO (termination criteria: {IterNo, εC , . . .}, Vmax)
1. For ∀a ∈ [1, S] do:

1.1. Randomize xa(1), va(1)
1.2. Let ya(0) = xa(1)
1.3. Let ŷ(0) = xa(1)

2. End For.
3. For ∀t ∈ [1, IterNo] do:

3.1. For ∀a ∈ [1, S] do:
3.1.1. Compute ya(t) using Eq. (1)

3.1.2. If

(
f (ya(t)) < min

(
f (ŷ(t − 1)), f (yi(t)

1≤i<a

)

))
then gbest = a

and ŷ(t) = ya(t)
3.2. End For.
3.3. If any termination criterion is met, then Stop.
3.4. For ∀a ∈ [1, S] do:

3.4.1. For ∀j ∈ [1, N] do:
3.4.1.1. Compute va,j(t + 1) using Eq. (2)
3.4.1.2. If (|va,j(t + 1)| > Vmax) then clamp it to |va,j(t + 1)| = Vmax
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3.4.1.3. Compute xa,j(t + 1) using Eq. (2)
3.4.2. End For.

3.5. End For.
4. End For.

ach dimensional component, j ∈ [1, N], as follows:

va,j(t + 1) = w(t)va,j(t) + c1r1,j(t)(ya,j(t) − xa,j(t))

+ c2r2,j(t)(ŷj(t) − xa,j(t))

xa,j(t + 1) = xa,j(t) + va,j(t + 1)

(2)

here w is the inertia weight [34], and c1, c2 are acceleration con-
tants which are usually set to 1.49 or 2. r1,j ∼ U(0, 1) and r2,j ∼ U(0,
) are random variables with a uniform distribution. Recall from
he earlier discussion that the first term in the summation is the
emory term, which represents the contribution of the previous

elocity, the second term is the cognitive component, which repre-
ents the particle’s own experience and the third term is the social
omponent through which the particle is “guided” by the gbest par-
icle towards the GB solution so far obtained. Although the use of
nertia weight, w, was later added by Shi and Eberhart [34], into the
elocity update equation, it is widely accepted as the basic form of
he PSO algorithm. A larger value of w favors exploration while a
mall inertia weight favors exploitation. As originally introduced,

is often linearly decreased from a high value (e.g. 0.9) to a low
alue (e.g. 0.4) during the iterations of a PSO run, which updates the
ositions of the particles using (2). Depending on the problem to be
ptimized, PSO iterations can be repeated until a specified number
f iterations, say IterNo, is exceeded, velocity updates become zero,
r the desired fitness score is achieved (i.e. f < εC where f is the fit-
ess function and εC is the cut-off error). Accordingly, the general
seudo-code of the bPSO is presented in Table 1.

Velocity clamping, also called “dampening” with a user-defined
aximum range Vmax (and −Vmax for the minimum) as in step

.4.1.2 is one of the earliest attempts to control or prevent oscil-
ations [9]. Such oscillations are indeed crucial since they broaden
he search capability of the swarm; however, they have a potential
rawback of oscillating continuously around the optimum point.
herefore, such oscillations should be dampened and convergence
s achieved with the proper use of velocity clamping and the inertia

eight. Furthermore, this is the bPSO algorithm where the particle
best is determined within the entire swarm. Another major topo-
ogical approach, the so-called lbest, also exists where the swarm
s divided into overlapping neighborhoods of particles and instead

f defining gbest and ŷ(t) = ygbest(t) over the entire swarm, for a
articular neighborhood Ni, the (local) best particle is referred as

best with the position ŷi(t) = ylbest(t). Neighbors can be defined
ith respect to particle indices (i.e. i ∈{j − l, j + l} or by using some

ther topological forms) [38]. It is obvious that gbest is a special
puting 11 (2011) 2334–2347

case of lbest scheme where the neighborhood is defined as the
entire swarm. The lbest approach is one of the earlier attempts,
which usually improves the diversity; however, it is slower than
the gbest approach [21] and requires more parameters and setting
of a suitable neighborhood topology. Even in [15], gbest approach
is found to be superior than several lbest topologies and therefore
is preferred in this context.

2.2. MD-PSO algorithm

Instead of operating at a fixed dimension N, the MD-PSO algo-
rithm [22] is designed to seek both positional and dimensional
optima within a dimension range, (Dmin ≤ N ≤ Dmax). In order to
accomplish this, each particle has two sets of components, each of
which has been subjected to two independent and consecutive pro-
cesses. The first one is a regular positional PSO, i.e. the traditional
velocity updates and following positional moves in N-dimensional
search (solution) space. The second one is a dimensional PSO, which
allows the particle to navigate through dimensions. Accordingly,
each particle keeps track of its last position, velocity and personal
best position (pbest) in a particular dimension so that when it
re-visits the same dimension at a later time, it can perform its reg-
ular “positional” fly using this information. The dimensional PSO
process of each particle may then move the particle to another
dimension where it will remember its positional status and keep
“flying” within the positional PSO process in this dimension, and so
on. The swarm, on the other hand, keeps track of the gbest parti-
cles in all dimensions, each of which respectively indicates the best
(global) position so far achieved and can thus be used in the regular
velocity update equation for that dimension. Similarly, the dimen-
sional PSO process of each particle uses its personal best dimension
in which the personal best fitness score has so far been achieved.
Finally, the swarm keeps track of the global best dimension, dbest,
among all the personal best dimensions. The gbest particle in dbest
dimension represents the optimum solution (and the optimum
dimension).

In a MD-PSO process and at time (iteration) t, each particle a in
the swarm, � ={x1, . . ., xa, . . ., xS}, is represented by the following
characteristics:

• xxxda(t)
a,j

(t) : jth component (dimension) of the velocity of
particle a, in dimension xda(t)

• vxxda(t)
a,j

(t) : jth component (dimension) of the velocity of
particle a, in dimension xda(t)

• xyxda(t)
a,j

(t) : jth component (dimension) of the personal
best (pbest) position of particle a, in dimension xda(t)

• gbest(d): global best particle index in dimension d
• xŷd

j
(t) : jth component (dimension) of the global best

position of swarm, in dimension d
• xda(t): dimension component of particle a
• vda(t) : velocity component of dimension of particle a
• xd̃a(t) : personal best dimension component of particle a

Fig. 1 shows sample MD-PSO and bPSO particles with index a.
The bPSO particle that is at a (fixed) dimension, N = 5, contains only
positional components whereas MD-PSO particle contains both
positional and dimensional components, respectively. In the fig-
ure the dimension range for the MD-PSO is given between 2 and
9; therefore the particle contains 8 sets of positional components
(one for each dimension). In this example, the current dimension

where the particle a resides is 2 (xda(t) = 2) whereas its personal best
dimension is 3 (xd̃a(t) = 3). Therefore, at time t, a positional PSO
update is first performed over the positional elements, xx2

a(t) and
then the particle may move to another dimension by the dimen-
sional PSO.
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Fig. 1. Sample MD-PSO (right) vs. bPSO (left) particle structures. For MD-PSO

Let f denote the dimensional fitness function that is to be
ptimized within a certain dimension range, (Dmin ≤ N ≤ Dmax).
ithout loss of generality assume that the objective is to find the
inimum (position) of f at the optimum dimension within a multi-

imensional search space. Assume that the particle a visits (back)
he same dimension after T iterations (i.e. xda(t) = xda(t + T)), then
he personal best position can be updated in iteration t + T as fol-
ows:

yxda(t+T)
a,j (t + T)

=
{

xyxda(t)
a,j

(t) if f (xxxda(t+T)
a (t + T)) > f (xyxda(t)

a (t))

xxda(t+T)
a,j

(t + T) else

}

∀j ∈ [1, xda(t)] (3)

Furthermore, the personal best dimension of particle a can be
pdated in iteration t + 1 as follows:

d̃a(t + 1) =
{

xd̃a(t) if f (xxxda(t+1)
a (t + 1)) > f (xyxd̃a(t)

a (t))
xda(t + 1) else

}
(4)

Recall that gbest(d) is the index of the global best
article at dimension d then xŷdbest(t) = xydbest

gbest(dbest)(t) =
rg min

∀i ∈ [1,S]
(f (xydbest

i
(t)). For a particular iteration t, and for a

article a ∈ [1, S], first the positional components are updated in
he current dimension, xda(t), and then the dimensional update is
erformed to determine the next (t + 1st) dimension, xda(t + 1). The
ositional update is performed for each dimension component,
∈ [1, xda(t)] as follows:

vxxda(t)
a,j

(t + 1) = w(t)vxxda(t)
a,j

(t) + c1r1,j(t)(xyxda(t)
a,j

(t) − xxxda(t)
a,j

(t))

+ c2r2,j(t)(xŷxda(t)
j

(t) − xxxda(t)
a,j

(t))

xxxda(t)
a,j

(t + 1) = xxxda(t)
a,j

(t) + vxxda(t)
a,j

(t + 1)

(5)

Note that the particle’s new position, xxxda(t)
a (t + 1), will still

e in the same dimension, xda(t); however, the particle may fly
o another dimension afterwards with the following dimensional

pdate equations:

vda(t + 1) =
⌊
vda(t) + c1r1(t)(xd̃a(t) − xda(t))

+ c2r2(t)(dbest − xda(t))
⌋

xda(t + 1) = xda(t) + vda(t + 1)
(6)
2, Dmax = 9] and at the current time t, xda(t) = 2 and xd̃a(t) = 3. For bPSO N = 5.

where 	·
 is the floor operator. Unlike in Eq. (2), an inertia weight
is not used for positional velocity update, since no benefit was
obtained experimentally for dimensional PSO. To avoid exploding,
along with the positional velocity limit Vmax, two more clamping
operations are applied for dimensional PSO components, such as
|vda,j(t + 1)| < VDmax and the initial dimension range set by the
user, Dmin ≤ xda(t) ≤ Dmax. Once the MD-PSO process terminates,
the optimum solution will be xŷdbest at the optimum dimension,
dbest, achieved by the particle gbest(dbest) and finally the best (fit-
ness) score achieved will naturally be f (xŷdbest). Accordingly, the
general pseudo-code of the MD-PSO technique is given in Table 2.

More detailed information of MD-PSO can be found in [22].

2.3. Data clustering by MD-PSO

As the process of identifying natural groupings in a multi-
dimensional data based on some distance metric (e.g. Euclidean),
data clustering can be divided into two main categories: hierar-
chical and partitional [12]. Each category then has a wealth of
sub-categories and different algorithmic approaches for finding the
clusters where extensive survey can be found in [19,31].

A hard clustering technique based on the basic PSO (bPSO) was
first introduced by Omran et al. in [29] and this work showed
that the bPSO can outperform K-means, Fuzzy C-means (FCM), K-
harmonic means (KHM) and some other state-of-the-art clustering
methods in any (evaluation) criteria. This is indeed an expected
outcome due to the PSO’s aforementioned ability to cope up with
the local optima by maintaining a guided random search opera-
tion through the swarm particles. In clustering, similar to other PSO
applications, each particle represents a potential solution at a par-
ticular time t, i.e. the particle a in the swarm, � ={x1, . . ., xa, . . ., xS}, is
formed as xa(t) ={ca,1, . . ., ca,j, . . ., ca,K}⇒ xa,j(t) = ca,j where ca,j is the
jth (potential) cluster centroid in N-dimensional data space and K
is the number of clusters fixed in advance. Note that the data space
dimension, N, is now different from the solution space dimension,
K. Furthermore, the fitness (validity index) function, f that is to be
optimized, is formed with respect to two widely used criteria in
clustering:
• Compactness: Data items in one cluster should be similar or close
to each other in N-dimensional space and different or far away
from the others when belonging to different clusters.

• Separation: Clusters and their respective centroids should be dis-
tinct and well separated from each other.
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Table 2
Pseudo-code of MD-PSO algorithm.

MD-PSO (termination criteria: {IterNo, εC , . . .}, Vmax, VDmax, Dmin, Dmax)
1. For ∀a ∈ [1, S] do:

1.1. Randomize xda(0)
1.2. Initialize xd̃a(0) = xda(0)
1.3. For ∀d ∈ [Dmin, Dmax] do:

1.3.1. Randomize xxd
a(0)

1.3.2. Initialize xyd
a(0) = xxd

a(0)
1.4. End For.

2. End For.
3. For ∀t ∈ [1, IterNo] do:

3.1. For ∀a ∈ [1, S] do:

3.1.1. If

(
f (xxxda(t)

a (t)) < min

(
f (xyxda(t)

a (t − 1)), min
p ∈ S−{a}

(f (xxxda(t)
p (t)))

))
then do:

3.1.1.1. xyxda(t)
a (t) = xxxda(t)

a (t)

3.1.1.2. If (f (xxxda(t)
a (t)) < f (xyxda(t)

gbest(xda(t))
(t − 1))) then gbest(xda(t)) = a

3.1.1.3. If (f (xxxda(t)
a (t)) < f (xyxd̃a(t−1)

a (t − 1))) then xd̃a(t) = xda(t)

3.1.1.4. If (f (xxxda(t)
a (t)) < f (xŷdbest(t − 1))) then dbest = xda(t)

3.1.2. End If.
3.2. End For.
3.3. If the termination criteria are met, then Stop.

3.4. For ∀a ∈ [1, S] do:
3.4.1. For ∀j ∈ [1, xda(t)] do:

3.4.1.1. Compute vxxda(t)
a,j

(t + 1) using Eq. (5)
3.4.1.2. If (|vxxda(t)

a,j
(t + 1)| > Vmax) then clamp it to |vxxda(t)

a,j
(t + 1)| = Vmax

3.4.1.3. Compute xxxda(t)
a,j

(t + 1) using Eq. (5)
3.4.2. End For.
3.4.3. Compute vda(t + 1) using Eq. (6)
3.4.4. If (|vda(t + 1)| > VDmax) then clamp it to |vda(t + 1)| = VDmax

3.4.5. Compute xda(t + 1) using Eq. (6)
3.4.6. If (xd (t + 1) < D ) then (xd (t + 1) = D )
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3.4.7. If (xda(t + 1) > Dmax) then (xda(t + 1) = Dmax)
3.5. End For.

4. End For.

The fitness functions for clustering are then formed as a regu-
arization function fusing both Compactness and Separation criteria
nd in this problem domain they are known as clustering validity
ndices. Omran et al. in [29] used the following validity index in
heir work,

f (xa, Z) = w1d̄max(xa, Z) + w2(Zmax − dmin(xa)) + w3Qe(xa)

where Qe(xa) = 1
K

K∑
j=1

∑
∀zp ∈ xa,j

||xa,j − zp||
||xa,j||

(7)

here Qe is the quantization error (or the average intra-cluster dis-
ance), d̄max is the maximum average Euclidean distance of data
oints, Z ={zp, zp ∈ xa,j}, to their centroids, xa. Zmax is a constant
alue for theoretical maximum inter-cluster distance, and dmin
s the minimum centroid (inter-cluster) distance in the cluster
entroid set xa. The weights, w1, w2, w3 are user-defined reg-
larization coefficients. So the minimization of the validity index

(xa, Z) will simultaneously try to minimize the intra-cluster dis-
ances (for better Compactness) and maximize the inter-cluster
istance (for better Separation). In such a regularization approach,
ifferent priorities (weights) can be assigned to both sub-objectives
ia proper setting of weight coefficients; however, this makes the
pproach strictly parameter dependent. Another traditional and
ell-known validity index is Dunn’s index [8], which suffers from

wo drawbacks: It is computationally expensive and sensitive to
oise [16]. Several variants of Dunn’s index were proposed in [31]
here robustness against noise is improved. There are many other

alidity indices, i.e. proposed by Turi [39], Davies and Bouldin [7],

alkidi et al. [16], etc. A throughout survey can be found in [16].
ost of them presented promising results; however, none of them

an guarantee the “optimum” number of clusters in every clustering
cheme. Especially for the aforementioned PSO-based clustering in
29], the clustering scheme further depends on weight coefficients
puting 11 (2011) 2334–2347

and may, therefore, result in over- or under-clustering particularly
in complex data distributions.

Although PSO-based clustering outperforms many well-known
clustering methods, it still suffers from two major drawbacks. The
number of clusters, K (being the solution space dimension) must
still be specified in advance and similar to other bPSO applications,
the method tends to trap in local optima particularly when the
complexity of the clustering scheme increases. This is also true for
dynamic clustering schemes, DCPSO [30] and MEPSO [1], both of
which eventually presented results only in low dimensions and for
simple data distributions.

Based on the earlier discussion it is obvious that the clus-
tering problem requires the determination of the solution space
dimension (i.e. number of clusters, K) where in a recent work [22]
MD-PSO technique has been successfully used. At time t, the par-
ticle a in the swarm, � ={x1, . . ., xa, . . ., xS}, has the positional
component formed as, xxxda(t)

a (t) = {ca,1, . . . , ca,j, . . . , ca,xda(t)} ⇒
xxxda(t)

a,j
(t) = ca,j meaning that it represents a potential solution (i.e.

the cluster centroids) for the xda(t) number of clusters whilst jth
component being the jth cluster centroid. Apart from the regular
limits such as (spatial) velocity, Vmax, dimensional velocity, VDmax

and dimension range Dmin ≤ xda(t) ≤ Dmax, the N-dimensional data
space is also limited with some practical spatial range, i.e. Xmin <
xxxda(t)

a (t) < Xmax. In case this range is exceeded even for a single
dimension j, xxxda(t)

a,j
(t), then all positional components of the par-

ticle for the respective dimension xda(t) are initialized randomly
within the range (i.e. refer to step 1.3.1 in MD-PSO pseudo-code
in Table 2) and this further contributes to the overall diversity. In
this work as well as in [22], the following validity index is used
to obtain computational simplicity with minimal or no parameter
dependency,

f (xxxda(t)
a , Z) = Qe(xxxda(t)

a )(xda(t))˛ where

Qe(xxxda(t)
a ) = 1

xda(t)

xda(t)∑
j=1

∑
∀zp ∈ xxxda(t)

a,j
||xxxda(t)

a,j
− zp||

||xxxda(t)
a ||

(8)

where Qe is the quantization error (or the average intra-cluster dis-
tance) as the Compactness term and (xda(t))˛ is the Separation term,
by simply penalizing higher cluster numbers with an exponential,
˛ > 0. Using ˛ = 1, the validity index yields the simplest form (i.e.
only the nominator of Qe) and becomes entirely parameter-free.

On the other hand, (hard) clustering has some constraints. Let
Cj = {xxxda(t)

a,j
(t)} = {ca,j} be the set of data points assigned to a

(potential) cluster centroid xxxda(t)
a,j

(t) for a particle a at time t. The
partitions Cj, ∀ j ∈ [1, xda(t)] should maintain the following con-
straints:

1. Each data point should be assigned to one cluster set, i.e.⋃xda(t)
j=1 Cj = Z.

2. Each cluster should contain at least one data point, i.e. Cj /= {�},
∀ j ∈ [1, xda(t)].

3. Two clusters should have no common data points, i.e. Ci ∩ Cj ={�},
i /= j and ∀ i, j ∈ [1, xda(t)].

In order to satisfy the 1st and 3rd (hard) clustering constraints,
before computing the clustering fitness score via the validity index
function in (8), all data points are first assigned to the closest
centroid. Yet there is no guarantee for the fulfillment of the 2nd
constraint since xxxda(t)

a (t) is set (updated) by the internal dynam-
ics of the MD-PSO process and hence any dimensional component

(i.e. a potential cluster candidate), xxxda(t)

a,j
(t), can be in an abun-

dant position (i.e. no closest data point exists). To avoid this, a high
penalty is set for the fitness score of the particle, i.e. f (xxxda(t)

a , Z) ≈
∞, if {xxxda(t)

a,j
} = {�} for any j.
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Table 3
Pseudo-code for SPSA technique.

SPSA (IterNo, a, c, A, ˛, �)
1. Initialize

�
�1

2. For ∀k ∈ [1, IterNo] do:
2.1. Generate zero-mean, p-dimensional perturbation vector: 	k

2.2. Let ak = a/(A + k)˛ and ck = c/k�

2.3. Compute L(
�
�k + ck	k) and L(

�
�k − ck	k)

3

3
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given (dimension) range, d ∈ [Dmin, Dmax]. The main difference is
that in each dimension, there is a distinct gbest particle, gbest(d).
So SPSA is applied individually over the position of each gbest(d) if
it (re-) visits the dimension d (i.e. d = xdgbest(t)). Therefore, there
2.4. Compute �gk(
�
�k) using (11)

2.5. Compute
�
�k+1 using (10)

3. End For.

. The proposed techniques: SAD PSO and SAD MD-PSO

.1. SPSA overview

The goal of deterministic optimization methods is to minimize
loss function L : Rp → R1, which is a differentiable function of �

nd the minimum (or maximum) point �* corresponds to the zero-
radient point, i.e.

(�) ≡ ∂L(�)
∂�

∣∣∣∣
�=�∗

= 0 (9)

As mentioned earlier, in cases where more than one point
atisfies this equation (e.g. a multi-modal problem), then such algo-
ithms may only converge to a local minimum. Moreover, in many
ractical problems, g is not readily available. This makes the SA
lgorithms quite popular and they are in the general SA form:

k+1 = �
�k − ak

�gk(
�
�k) (10)

here �gk(
�
�k) is the estimate of the gradient g(�) at iteration k

nd ak is a scalar gain sequence satisfying certain conditions [35].
here are two common SA methods: finite difference SA (FDSA) and
imultaneous perturbation SA (SPSA). FDSA adopts the traditional
iefer-Wolfowitz approach to approximate gradient vectors as a
ector of p partial derivatives where p is the dimension of the loss
unction. On the other hand, SPSA has all elements of

�
�k perturbed

imultaneously using only two measurements of the loss function
s,

k(
�
�k) = L(

�
�k + ck	k) − L(

�
�k − ck	k)

2ck

⎡
⎢⎢⎢⎣

	−1
k1

	−1
k2
...

	−1
kp

⎤
⎥⎥⎥⎦ (11)

here the p-dimensional random variable 	k is usually chosen as
ernoulli ±1 distribution and ck is a scalar gain sequence satisfy-

ng certain conditions [35]. Spall in [35] presents conditions for
onvergence of SPSA (i.e.

�
�k → �∗) and show that under certain

onditions both SPSA and FDSA have the same convergence abil-
ty – yet SPSA needs only 2 measurements whereas FDSA needs
p. This makes SPSA our natural choice for driving gbest in both
pproaches. Table 3 presents the general pseudo-code of the SPSA
echnique.

SPSA has five parameters as given in Table 3. Spall in [36] rec-
mmended to use values for A (the stability constant), ˛, and � as
0, 0.602 and 0.101, respectively. However, he also concluded that
the choice of both gain sequences is critical to the performance of
he SPSA as with all stochastic optimization algorithms and the choice
f their respective algorithm coefficients”. This especially makes the

hoice of gain parameters a and c critical for a particular problem,
.e. Maryak and Chin in [27] varied them with respect to the problem

hilst keeping the other three (A, ˛, and �) as recommended.
Recently Maeda and Kuratani in [28] has used SPSA with the

PSO in a hybrid algorithm called Simultaneous Perturbation PSO
puting 11 (2011) 2334–2347 2339

(SP-PSO) over a limited set of problems and reported some slight
improvements over the bPSO. Both SP-PSO variants they proposed
involved the insertion of the �gk(

�
�k) directly over the velocity equa-

tions of all swarm particles with the intention of improving their
local search capability. This may, however, present some draw-
backs. First of all, performing SPSA at each iteration and for all
particles will double the computational cost of the PSO since SPSA
will require an additional function evaluation at each iteration.1

Secondly, such an abrupt adding of SPSA’s �gk(
�
�k) term directly into

the bPSO may degrade the original PSO workout, i.e. the collective
swarm updates and interactions, and require an accurate scaling
between the parameters of the two methods, PSO’s and SPSA. Oth-
erwise, one can dominant the other, and hence their combination
may turn out to be a noisy variant of either method. This is perhaps
the reason of the limited success, if any, achieved by SP-PSO. As we
discuss next and demonstrate its elegant performance experimen-
tally, SPSA should not be mixed up with PSO as such, rather should
only be used to guide it if SPSA can drive the PSO’s native guide, the
gbest, better than PSO.

3.2. SAD PSO

In this work two distinct SAD PSO approaches are proposed,
each of which is only applied to gbest whilst keeping the inter-
nal PSO process intact. Since both SPSA and PSO are iterative
processes, in both approaches SPSA can thus easily be inte-
grated into PSO by using the same iteration count (i.e. t ≡ k).
In other words, at a particular iteration t in the PSO process,
only the SPSA steps 2.1–2.5 in Table 3 are inserted accordingly
into the PSO process. The following sub-sections will detail each
approach.

A1) First SAD PSO approach: gbest update by SPSA

In this approach, at each iteration gbest particle is updated using
SPSA. This requires the adaptation of the SPSA elements (parame-
ters and variables) and integration of the internal SPSA part (within
the loop) appropriately into the PSO pseudo-code, as shown in
Table 4. Note that such a “plug-in” approach will not change the
internal PSO structure and only affects the gbest particle’s move-
ment. It only costs two extra function evaluations and hence at
each iteration the total number of evaluations is increased from S
to S + 2 (recall that S is the swarm size).

Since the fitness of each particle’s current position is computed
within the PSO process, it is possible to further diminish this cost to
only one extra fitness evaluation per iteration. Let

�
�k + ck	k = xa(t)

in step 3.4.1.1. and thus L(
�
�k + ck	k) is known a priori. Then nat-

urally,
�
�k − ck	k = xa(t) − 2ck	k, which is the only (new) location

where the (extra) fitness evaluation (L(
�
�k − ck	k)) has to be com-

puted. Once the gradient (�gk(
�
�k)) is estimated in step 3.4.1.4, then

the next (updated) location of the gbest will be: xa(t + 1) = �
�k+1.

Note that the difference of this “low-cost” SPSA update is that
xa(t + 1) is updated (estimated) not from xa(t), but instead from
xa(t) − ck	k.

This approach can easily be extended for MD-PSO, which is a
natural extension of PSO for multi-dimensional search within a
1 In [28] the function evaluations are given with respect to the iteration number;
however, it should have been noted that SP-PSO performs twice more evaluations
than bPSO per iteration. Considering this fact, the plots therein show little or no
performance improvement at all.
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Table 4
Pseudo-code for the first SAD PSO approach.

A1) SAD PSO Plug-in (termination criteria: {IterNo, εC , . . .}, Vmax, a, c, A, ˛, �)
1. See Line 1 in Table 1
2. See Line 2 in Table 1
3. For ∀t ∈ [1, IterNo] do:

3.4. For ∀a ∈ [1, S] do:
3.4.1. If (a = gbest) then do:

3.4.1.1. Let k = t,
�
�k = xa(t) and L = f

3.4.1.2. Let ak = a/(A + k)˛ and ck = c/k�

3.4.1.3. Compute L(
�
�k + ck	k) and L(

�
�k − ck	k)

3.4.1.4. Compute �gk(
�
�k) using Eq. (11)

3.4.1.5. Compute xa(t + 1) = �
�k+1 using Eq. (10)

3.4.2. Else do:
3.4.2.1. For ∀j ∈ [1, N] do:

3.4.2.1.1. Compute va,j(t + 1) using Eq. (2)
3.4.2.1.2. If (|va,j(t + 1)| > Vmax) then clamp it to |va,j(t + 1)| = Vmax

3.4.2.1.3. Compute xa,j(t + 1) using Eq. (2)
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Table 6
MD-PSO Plug-in for the second approach.

A2) SAD MD-PSO Plug-in (�, a, c, A, ˛, �)
1. Create a new aGB particle, {xxd

aGB
(t + 1), xyd

aGB
(t + 1)} for ∀d ∈ [Dmin, Dmax]

2. For ∀d ∈ [Dmin, Dmax] do:

2.1. Let k = t,
�
�k = xŷd(t) and L = f

2.2. Let ak = a/(A + k)˛ and ck = c/k�

2.3. Compute L(
�
�k + ck	k) and L(

�
�k − ck	k)

2.4. Compute �gk(
�
�k) using Eq. (11)

2.5. Compute xxd
aGB

(t + 1) = �
�k+1 using Eq. (10)

2.6. If (f (xxd
aGB

(t + 1)) < f (xyd
aGB

(t))) then xyd
aGB

(t + 1) = xxd
aGB

(t + 1)

2.7. Else xyd
aGB

(t + 1) = xyd
aGB

(t)
d d d d
3.4.2.2. End For.
3.5. End For.

4. End For.

an be 2(Dmax − Dmin) number of function evaluations, indicat-
ng a significant cost especially if a wide dimensional range is
sed. However, this is a theoretical limit, which can only happen

f gbest(i) /= gbest(j) for ∀ i, j ∈ [Dmin, Dmax], i /= j and all particles
ltogether visit the particular dimensions in which they are gbest
i.e. xdgbest(d)(t) = d, ∀ t ∈ [1, iterNo]). Especially in a wide dimen-
ional range, note that this is highly unlikely due to the dimensional
elocity, which makes particles move (jump) from one dimension
o another at each iteration. It is straightforward to see that under
he assumption of a uniform distribution for particles’ movements
ver all dimensions within the dimensional range, SAD MD-PSO
oo, would have the same cost overhead as the SAD PSO. Exper-
mental results indicate that the practical overhead cost is only
lightly higher than this.

2) Second SAD PSO approach: aGB formation by SPSA

The second approach replaces the FGBF operation proposed
n [22] with the SPSA to create an aGB particle. SPSA is basically
pplied over the pbest position of the gbest particle. The aGB par-
icle will then guide the swarm instead of gbest if and only if it
chieves a better fitness score than the (personal best position of)
best. SAD PSO pseudo-code as given in Table 5 can then be plugged
n between steps 3.3 and 3.4 of bPSO pseudo-code.

The extension of the second approach to MD-PSO is also
uite straightforward. In order to create an aGB particle, for
ll dimensions in the given range (i.e. ∀d ∈ [Dmin, Dmax]) SPSA

s applied individually over the personal best position of each
best(d) particle and furthermore, the aforementioned competi-
ive selection ensures that xyd

aGB(t), ∀d ∈ [Dmin, Dmax] is set to the
est of the xxd

aGB(t + 1) and xyd
aGB(t). As a result, the SPSA cre-

able 5
SO Plug-in for the second approach.

A2) SAD PSO Plug-in (�, a, c, A, ˛, �)
1. Create a new aGB particle, {xaGB(t + 1), yaGB(t + 1)}
2. Let k = t,

�
�k = ŷ(t) and L = f

3. Let ak = a/(A + k)˛ and ck = c/k�

4. Compute L(
�
�k + ck	k) and L(

�
�k − ck	k)

5. Compute �gk(
�
�k) using Eq. (11)

6. Compute xaGB(t) = �
�k+1 using Eq. (10)

7. Compute f (xaGB(t + 1)) = L(
�
�k+1)

8. If (f(xaGB(t + 1)) < f(yaGB(t))) then yaGB(t + 1) = xaGB(t + 1)
9. Else yaGB(t + 1) = yaGB(t)
10. If (f (yaGB(t + 1)) < f (ŷ(t))) then ŷ(t) = yaGB(t + 1)
2.8. If (f (xy
aGB

(t + 1)) < f (xy
gbest(d)

(t))) then xy
gbest(d)

(t) = xy
aGB

(t + 1)

3. End For.
4. Re-assign dbest: dbest = arg min

d ∈ [Dmin,Dmax]
(f (xyd

gbest(d)
(t)))

ates one aGB particle providing (potential) GB solutions (xyd
aGB(t +

1), ∀d ∈ [Dmin, Dmax]) for all dimensions in the given dimension
range. The pseudo-code of the second approach as given in Table 6
can then be plugged in between steps 3.2 and 3.3 of the MD-PSO
pseudo-code, given in Table 2.

Note that in the second SAD PSO approach, there are three extra
fitness evaluations (as opposed to two in the first one) at each iter-
ation. Yet as in the first approach, it is possible to further decrease
the cost of SAD PSO by one (from three to two fitness evaluations
per iteration). Let

�
�k + ck	k = ŷ(t) in step 2 and thus L(

�
�k + ck	k) is

known a priori. Then it follows the same analogy as before and the
only difference is that the aGB particle is formed not from

�
�k = ŷ(t)

but from
�
�k = ŷ(t) − ck	k. However, in this approach a major dif-

ference in the computational cost may occur since in each iteration
there are inevitably 3(Dmax − Dmin) (or 2(Dmax − Dmin) for low-cost
application) fitness evaluations, which can be significant.

4. Experimental results

Two problem domains are considered in this paper over which
the proposed techniques are evaluated. The first one is non-linear
function minimization where several benchmark functions are
used. This allows us to test the performance of SAD PSO against
bPSO over both uni- and multi-modal functions. The second domain
is data clustering, which provides certain constraints in multi-
dimensional solution space and allows the performance evaluation
in the presence of significant variation in data distribution with an
impure validity index. This problem domain can efficiently validate
the performance of SAD MD-PSO regarding the convergence to the
global solution in the right dimension. In this way, we can truly
evaluate the contribution and the significance of both approaches
(A1 and A2) especially over multi-modal optimization problems in
high dimensions.

4.1. Non-linear function minimization

We used seven benchmark functions given in Table 7 to provide
a good mixture of complexity and modality. They have been widely
studied by several researchers, e.g. see [3,10,17,26,33,34]. Sphere,
De Jong and Rosenbrock are uni-modal functions and the rest are
multi-modal, meaning that they have many local minima. On the
macroscopic level Griewank demonstrates certain similarities with
uni-modal functions especially when the dimensionality is above
20; however, in low dimensions it bears a significant noise, which

creates many local minima due to the second multiplication term
with cosine components.

Both approaches of the proposed SAD PSO along with the “low-
cost” application are tested over seven benchmark functions given
in Table 7 and compared with the bPSO and standalone SPSA appli-
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Table 7
Benchmark functions with dimensional bias.

Function Formula Initial range Dimension set: {d}

Sphere F1(x, d) =

(
d∑

i=1

x2
i

)
[−150, 75] 20, 50, 80

De Jong F2(x, d) =

(
d∑

i=1

ix4
i

)
[−50, 25] 20, 50, 80

Rosenbrock F3(x, d) =

(
d∑

i=1

100(xi+1 − x2
i
)
2 + (xi − 1)2

)
[−50, 25] 20, 50, 80

Rastrigin F4(x, d) =

(
d∑

i=1

10 + x2
i

− 10 cos(2
xi)

)
[−500, 250] 20, 50, 80

Griewank F5(x, d) =

(
1

4000

d∑
i=1

x2
i

−
d∏

i=1

cos

(
xi√
i+1

))
[−500, 250] 20, 50, 80

Schwefel F6(x, d) =

(
418.9829d +

d∑
i=1

xi sin

(√
|xi|
))

[−500, 250] 20, 50, 80(
in
(
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)
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Giunta F7(x, d) =
d∑

i=1

sin
(

16
15 xi − 1

)
+ sin2

(
16
15 xi − 1

)
+ 1

50 s

ation. We used the same termination criteria as the combination
f the maximum number of iterations allowed (iterNo = 10,000) and
he cut-off error (εC = 10−5). We used three dimensions (20, 50 and
0) for the sample functions in order to test the performance of
ach technique in such varying dimensions individually. For PSO
bPSO and SAD PSO) we used the swarm size, S = 40, and w is linearly
ecreased from 0.9 to 0.2. We used the recommended values for A, ˛
nd � as 60, 0.602 and 0.101 as well as set a and c to 1 that are fixed
or all functions. We purposefully made no parameter tuning for
PSA since this may not be feasible for many practical applications,
articularly the ones where the underlying fitness (error) surface

s unknown. In order to make a fair comparison among SPSA, bPSO

nd SAD PSO, the number of evaluations is kept equal (so S = 38 and
= 37 are used for both SAD PSO approaches and the number of
valuations is set to 40 × 10,000 = 4E+5 for SPSA).

For each setting (for each function and each dimension), 100
uns are performed and the 1st and 2nd order statistics (mean,

able 8
tatistical results from 100 runs over 7 benchmark functions.

Functions d SPSA bPSO

� � �

Sphere 20 0 0 0
50 0 0 0
80 0 0 135.272

De Jong 20 0.013 0.0275 0
50 0.0218 0.03 9.0445
80 0.418 0.267 998.737

Rosenbrock 20 1.14422 0.2692 1.26462
50 3.5942 0.7485 15.9053
80 5.3928 0.7961 170.9547

Rastrigin 20 204.9169 51.2863 0.0429
50 513.3888 75.7015 0.0528
80 832.9218 102.1792 0.7943

Griewank 20 0 0 0
50 1.0631E+007 3.3726E+006 50.7317
80 2.8251E+007 5.7896E+006 24,978

Schwefel 20 0.3584 0.0794 1.7474
50 0.8906 0.1006 10.2027
80 1.4352 0.1465 21.8269

Giunta 20 42,743 667.2494 495.0777
50 10,724 1027.6 4257
80 17,283 1247.9 9873.6
(
16
15 xi − 1

))
+ 268

1000 [−500, 250] 20, 50, 80

� and standard deviation, �) of the fitness scores are reported in
Table 8 whilst the best statistics are highlighted. During each run,
the operation terminates when the fitness score drops below the
cut-off error and it is assumed that the global minimum of the func-
tion is reached, henceforth; the score is set to 0. Therefore, for any
setting yielding � = 0 as the average score means that the method
converges to the global minimum at every run.

As the entire statistics in the right side of Table 8 indicate, either
SAD PSO approach achieves an equal or superior average perfor-
mance statistics over all functions regardless of the dimension,
modality, and without any exception. In other words, SAD PSO per-
forms equal or better than the best of bPSO and SPSA – even though

either of them might have a quite poor performance for a partic-
ular function. Note especially that if SPSA performs well enough
(meaning that the setting of the critical parameters, e.g. a and c is
appropriate), then a significant performance improvement can be
achieved by SAD PSO, i.e. see for instance De Jong, Rosenbrock and

SAD PSO (A2) SAD PSO (A1)

� � � � �

0 0 0 0 0
0 0 0 0 0
276.185 0 0 0 0
0 0 0 0 0
26.9962 0.0075 0.0091 0.2189 0.6491
832.1993 0.2584 0.4706 13,546.02 4305.04
0.4382 1.29941 0.4658 0.4089 0.2130
5.21491 12.35141 2.67731 2.5472 0.3696
231.9113 28.1527 5.1699 5.2919 0.8177
0.0383 0.0383 0.0369 0.0326 0.0300
0.0688 0.0381 0.0436 0.0353 0.0503
0.9517 0.2363 0.6552 0.1240 0.1694
0 0 0 0 0
191.1558 0 0 3074.02 13,989
23,257 20,733 24,160 378,210 137,410
0.3915 0.3076 0.0758 0.3991 0.0796
2.2145 0.8278 0.1093 0.9791 0.1232
5.1809 1.3633 0.1402 1.5528 0.1544
245.1220 445.1360 264.1160 445.1356 249.5412
713.1723 3938.9 626.9194 3916.2 758.3290
1313 8838.2 1357 8454.2 1285.3
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Table 9
Statistical results between full-cost and low-cost modes from 100 runs over 7 benchmark functions.

Functions d Full-cost mode Low-cost mode

SAD PSO (A2) SAD PSO (A1) SAD PSO (A2) SAD PSO (A1)

� � � � � � � �

Sphere 20 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0

De Jong 20 0 0 0 0 0 0 0 0
50 0.0075 0.0091 0.2189 0.6491 0.0073 0.0036 23.7977 48.2012
80 0.2584 0.4706 13,546.02 4305.04 0.0326 0.0290 14,136 4578.8

Rosenbrock 20 1.29941 0.4658 0.4089 0.2130 1.1412 0.4031 0.3124 0.2035
50 12.35141 2.67731 2.5472 0.3696 9.2063 2.2657 2.5864 0.8232
80 28.1527 5.1699 5.2919 0.8177 24.0142 4.9823 12.9923 2.8497

Rastrigin 20 0.0383 0.0369 0.0326 0.0300 0.0263 0.0634 0.0383 0.0327
50 0.0381 0.0436 0.0353 0.0503 0.0066 0.0083 0.0062 0.0082
80 0.2363 0.6552 0.1240 0.1694 0.0053 0.0086 0.0043 0.0065

Griewank 20 0 0 0 0 0 0 0 0
50 0 0 3074.02 13,989 0.0018 0.0125 3033.1 16,588
80 20,733 24,160 378,210 137,410 143.5794 1247.7 342,230 114,280

Schwefel 20 0.3076 0.0758 0.3991 0.0796 0.7538 0.2103 2.1327 0.5960
50 0.8278 0.1093 0.9791 0.1232 1.2744 0.2282 6.4797 1.0569
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80 1.3633 0.1402 1.5528
Giunta 20 445.1360 264.1160 445.1356

50 3938.9 626.9194 3916.2
80 8838.2 1357 8454.2

chwefel. On the other hand, if SPSA does not perform well, even
uch worse than any other technique, SAD PSO still outperforms

PSO to a certain degree, e.g. see Giunta and particularly Griewank
or d = 50 where SAD PSO can still converge to the global optimum
� = 0) whereas SPSA performance is rather bad. This basically sup-
orts our aforementioned claim, i.e. the PSO update for gbest is
o poor that even an under-performing SPSA implementation can
till improve the overall performance significantly. Note that the
pposite is also true, that is, SAD PSO, which internally runs SPSA
or gbest achieves better performance than SPSA alone, even when
SO’s performance is limited.

Based on the results in Table 8, we can perform compara-

ive evaluations with some of the promising PSO variants such as
2,10,32,33] where similar experiments are performed over some
r all of these benchmark functions. For example in [2], a tour-
ament selection mechanism is formed among particles and the
ethod is applied over four functions (Sphere, Rosenbrock, Rastri-

able 10
-Test results for statistical significance analysis.

Functions d Pair of competing methods

bPSO – (A2)

Sphere 20 0
50 0
80 4.90

De Jong 20 0
50 3.35
80 12.00

Rosenbrock 20 0.54
50 6.06
80 6.16

Rastrigin 20 0.86
50 1.80
80 4.83

Griewank 20 0
50 2.65
80 1.27 (*)

Schwefel 20 36.11
50 42.28
80 39.48

Giunta 20 1.39
50 3.35
80 5.48
0.1544 1.6965 0.2165 9.5252 1.6241
249.5412 375.6510 242.7301 387.8901 249.8883
758.3290 3282 890.3426 3688.3 908.4803
1285.3 7922.1 1320.2 12,132 1579.4

gin and Griewank). Although the method is applied over a reduced
positional range, ±15, and at low dimensions (10, 20 and 30), they
got varying average scores in the range {0.3, 1194}. As a result, they
reported both better and worse performances than bPSO, depend-
ing on the function. In [10], bPSO and two PSO variants, GCPSO and
mutation-extended PSO over three neighborhood topologies are
applied to some common multi-modal functions, Rastrigin, Schwe-
fel and Griewank. Although the dimension is rather low (30), none
of the topologies over any PSO variant converged to the global
minimum and they reported average scores varying in the range
of {0.0014, 4762}. In [32], a diversity guided PSO variant, ARPSO,
along with two competing methods, bPSO and GA are applied over

the multi-modal functions (Rastrigin, Rosenbrock and Griewank)
at three different dimensions (20, 50 and 100). The experimental
results have shown that none of the three methods converged to
the global minimum except ARPSO over (only) Rastrigin at dimen-
sion 20. ARPSO performed better than bPSO and GA over Rastrigin

bPSO – (A1) SPSA – (A2) SPSA – (A1)

0 0 0
0 0 0
4.90 0 0
0 4.73 4.73
3.27 4.56 3.03

28.62 2.95 31.46
17.56 2.88 21.42
25.55 31.50 12.54

7.14 43.51 0.88 (*)
2.12 39.95 39.95
2.05 67.81 67.81
6.93 81.49 81.50
0 0 0
2.16 31.52 31.51

25.35 48.76 48.13
33.75 4.63 3.62
41.59 4.23 5.56
39.12 3.55 5.53

1.43 589.42 593.75
3.27 56.37 53.31
7.73 45.81 49.28
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Table 11
t-Table presenting degrees of freedom vs. probability.

Degrees of freedom P: probability
S. Kiranyaz et al. / Applied Sof

nd Rosenbrock but worse for Griewank. The CPSO proposed in
41] was applied over five functions including Sphere, Rastrigin,
osenbrock and Griewank. The dimension of all functions is fixed
o 30 and in this dimension, CPSO performed better than bPSO in
0% of the experiments. Finally in [33] dynamic sociometries via
ing and star have been introduced among the swarm particles
nd the performance of various combinations of swarm size and
ociometry over six functions (the ones used in this paper except
chwefel) has been reported. Although the tests are performed over
omparatively reduced positional ranges and at a low dimension
30), the experimental results indicate that none of the sociometry
nd swarm size combinations converged to the global minimum
f multi-modal functions except only for some dimensions of the
riewank function.

The statistical comparison between low-cost mode and the orig-
nal (full-cost) are reported in Table 9. The statistics in the table
ndicate that both modes within both approaches usually obtain a
imilar performance but occasionally a significant gap is visible.
or instance, low-cost mode achieves a significantly better per-
ormance within the second SAD PSO approach for De Jong and
riewank functions at d = 80. The opposite is true for Schwefel par-

icularly at d = 20.
In order to verify if the results are statistically significant, we

hall now apply statistical significance test between each SAD PSO
pproach and each technique (bPSO and SPSA) using the statistical
ata given in Table 9. Let H0 be the null hypothesis, which states
hat there is no difference between the proposed and competing
echniques (i.e. the statistical results occur by chance). We shall
hen define two common threshold values for P, 5% and 1%. If the P
alue, which is the probability of observing such a large difference
or larger) between the statistics, is less than either threshold, then
e can reject H0 with that confidence level. To accomplish this, we
erformed the standard t-test and compute the t values between
he pair of competing methods. Recall that the formula for the t-test
s as follows:

= �1 − �2√
((n1 − 1)�2

1 + (n2 − 1)�2
2 )/(n1 + n2 − 2)((n1 + n2)/n1n2)

(12)

here n1 = n2 = 100 is the number of runs. Using the first and
econd order statistics presented in Table 8, the overall t-test

alues are computed and enlisted in Table 10. In those entries
ith 0 value, both methods have a zero mean and zero vari-

nce, indicating convergence to the global optimum. In such cases,
0 cannot be rejected. In those non-zero entries, t-test values
orresponding to the best approach are highlighted. In those t-

Fig. 2. 2D synthetic data spaces carryi
0.1 0.05 0.01 0.001

100 1.29 1.66 2.364 3.174
∞ 1.282 1.645 2.325 3.090

tests the degrees of freedom is simply, n1 + n2 − 2 = 198. Table 11
presents two corresponding entries of t-test values required to
reject H0 at several levels of confidence (one-tailed test). Accord-
ingly, H0 can be rejected and hence all results are statistically
significant beyond the confidence level of 0.01 except the two
entries shown with a (*) in Table 10. Note that the majority of
the results are statistically significant beyond the 0.001 level of
confidence (e.g. the likelihood to occur by chance is less than 1 in
1000 times).

4.2. Data clustering

In order to test each approach of the proposed SAD MD-PSO
technique over (data) clustering, we created 8 synthetic data spaces
as shown in Fig. 2 where white dots (pixels) represent data points.
For illustration purposes each data space is formed in 2D; however,
clusters are formed with different shapes, densities, sizes and inter-
cluster distances to test the robustness of clustering application
of the proposed approaches against such variations. Furthermore,
recall that the number of clusters determines the (true) dimension
of the solution space in a PSO application and hence it is also kept
varying among data spaces to test the convergence accuracy to the
true (solution space) dimension. As a result, significantly varying
complexity levels are established among all data spaces to perform
a general-purpose evaluation of each approach.

Unless stated otherwise, the maximum number of iterations is
set to 10,000 as before; however, the use of cut-off error as a ter-
mination criterion is avoided since it is not feasible to set a unique
εC value for all clustering schemes. The same range values given in
Section 4.1 are also used in all experiments except the positional
range, since it can now be set simply as the natural boundaries of
the 2D data space. For MD-PSO, we used the swarm size, S = 200
and for both SAD MD-PSO approaches, a reduced number is used

in order to ensure the same number of evaluation among all com-
peting techniques. w is linearly decreased from 0.75 to 0.2 and we
again used the recommended values for A, ˛ and � as 60, 0.602 and
0.101, whereas a and c are set to 0.4 and 10, respectively. For each
dataset, 20 clustering runs are performed and the 1st and 2nd order

ng different clustering schemes.
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Table 12
Statistical results from 20 runs over 8 2D data spaces.

Clusters No. d MD-PSO SAD MD-PSO (A2) SAD MD-PSO (A1)

Score dbest Score dbest Score dbest

� � � � � � � � � � � �

C1 6 6 1456.5 108.07 6.4 0.78 1455.2 103.43 6.3 0.67 1473.8 109 6.2 1.15
C2 10 12 1243.2 72.12 10.95 2.28 1158.3 44.13 12.65 2.08 1170.8 64.88 11.65 1.56
C3 10 11 3833.7 215.48 10.4 3.23 3799.7 163.5 11.3 2.57 3884.8 194.03 11.55 2.66
C4 13 14 1894.5 321.3 20.2 3.55 1649.8 243.38 19.75 2.88 1676.2 295.8 19.6 2.32
C5 16 17 5756 1439.8 19 7.96 5120.4 1076.3 22.85 4.17 4118.3 330.31 21.8 2.87
C6 19 28 21,533 4220.8 19.95 10.16 18,323 1687.6 26.45 2.41 20,016 3382 22.3 6.97
C7 22 22 3243 1133.3 21.95 2.8 2748.2 871.1 23 2.51 2380.5 1059.2 22.55 2.8
C8 22 25 6508.85 1014 17.25 10.44 6045.1 412.78 26.45 3.01 5870.25 788.6 23.5 5.55

Fig. 3. Fitness score (top) and dimension (bottom) plots vs. iteration number for a clustering operation over C2. Three clustering snapshots at iterations 105, 1050 and 1850,
are presented below.

Fig. 4. Some clustering runs with the corresponding fitness scores (f).
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Fig. 5. The worst and the best clustering resu

tatistics (mean, � and standard deviation, �) of the fitness scores
nd dbest values converged are presented in Table 12 whilst the
est statistics are highlighted.

According to the statistics in Table 12, similar comments can
e made as in the PSO application on non-linear function min-

mization, i.e. either SAD MD-PSO approach achieves a superior
erformance over all data spaces regardless of the number of clus-
ers and cluster complexity (modality) without any exception. The
uperiority hereby is visible on the average fitness scores achieved
s well as the proximity of the average dbest statistics to the opti-
al dimension. Note that d in the table is the optimal dimension,
hich may be different than the true number of clusters due to the
alidity index function used. A sample clustering operation (over
ata space C2) illustrating this case is shown in Fig. 3 where in the
ottom part, each cluster is represented in one of the three color
odes (red, green and blue) for illustration purposes and each clus-
er centroid (each dimensional component of the gbest particle) is
ng standalone (left) and SAD (right) MD-PSO.

shown with a white ‘+’. Note that the (true) number of clusters is
10, which is eventually reached at the beginning of the operation,
yet the minimum score achieved with 10 clusters (∼1100) remains
higher than the one with 11 (∼710) and than the final (and opti-
mal) outcome with 12 clusters (∼570) too. The main reason for
this is that the validity index in Eq. (8) over long (and loose) clus-
ters such as ‘C’ and ‘S’ in the figure, yields a much higher fitness
score with one centroid than two or perhaps more and therefore,
over all data spaces with such long and loose clusters (e.g. C3–C6
and C8), the proposed method yields a slight over-clustering but
never under-clustering. Improving the validity index or adopting
a more sophisticated one such as Dunn’s index [8] or any other,

might improve the clustering accuracy; however, this is beyond
the scope of this paper. Note that under-clustering, if it occurs, is a
major error in a clustering operation, which means that the opti-
mization method got trapped in a local optimum during the early
stages.
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Some further important conclusions can be drawn from the sta-
istical results in Table 12. First of all, the performance gap tends to
ncrease as the cluster number (dimension of the solution space)
ises. For instance all methods have fitness scores in a close vicinity
or the data space C1 whilst both SAD MD-PSO approaches perform
ignificantly better for C7. Note, however, that the performance gap
or C8 is not as high as in C7, indicating SPSA parameters are not
oo appropriate for C8 (as a consequence of fixed SPSA parameter
etting). On the other hand, in some particular clustering runs, the
ifference in the average fitness scores in Table 12 does not really
orrespond to the actual improvement in the clustering quality.
ake for instance the two clustering runs over C1 and C2 in Fig. 4
here some clustering instances with the corresponding fitness

cores are shown. The first (left-most) instances in both rows are
rom severely erroneous clustering operation although only a mere
ifference in fitness scores occurs with the instances in the sec-
nd column, which have significantly less clustering errors. On the
ther hand the proximity of the average dbest statistics to the opti-
al dimension may be another alternative for the evaluation of the

lustering performance; however, it is fairly probable that two runs,
ne with severely under- and another with over-clustering, may
ave an average dbest that is quite close to the optimal dimension.
herefore, the standard deviation should play an important role in
he evaluation and in this aspect; one can see from the statistical
esults in Table 12 that the second SAD MD-PSO approach (A2) in
articular achieves the best performance (i.e. converging to the true
umber of clusters and correct localization of the centroids) whilst
he performance of the standalone MD-PSO is the poorest.

For visual evaluation, Fig. 5 presents the worst and the best clus-
ering results of the two competing techniques, standalone vs. SAD

D-PSO, based on the highest (worst) and lowest (best) fitness
cores achieved among the 20 runs. The clustering results of the
est performing SAD MD-PSO approach, as highlighted in Table 12,
re shown whilst excluding C1 since results of all techniques are
uite close for this data space due to its simplicity. Note first of all
hat the results of the (standalone) MD-PSO deteriorate severely
s the complexity and/or the number of clusters increases. Particu-
arly in the worst results, the critical errors such as under-clustering
ften occur with dislocated cluster centroids. For instance 4 out of
0 runs for C6 results in severe under-clustering with 3 clusters,
imilar to the one shown in the figure whereas this goes up to 10
ut of 20 runs for C8. Although the clusters are the simplest in
hape and in density for C7, due to the high solution space dimen-
ion (e.g. number of clusters = 22), even the best MD-PSO run is not
mmune to under-clustering errors. In some of the worst SAD MD-
SO runs too, one or few under-clusterings do occur; however, they
re minority cases in general and definitely not as severe as in MD-
SO runs. It is quite evident from the worst and the best results in
he figure that SAD MD-PSO achieves a significantly superior clus-
ering quality and usually converges to a close vicinity of the global
ptimum solution.

. Conclusions

In this paper, we draw the focus on a major drawback of the
SO algorithm: the poor gbest update. This can be a severe prob-
em, which may cause premature convergence to local optima since
best as the common term in the update equation of all particles, is
he primary guide of the swarm. Therefore, we basically seek a solu-
ion for the social problem in PSO, i.e. “Who will guide the guide?”
hich resembles the rhetoric question posed by Plato in his famous

ork on government: “Who will guard the guards?” (Quis custodiet

psos custodes?). SA is purposefully adopted to guide (or drive) the
best particle (with simultaneous perturbation) towards the “right”
irection with the gradient estimate of the underlying surface (or
unction) whilst avoiding local traps due to its stochastic nature. In
puting 11 (2011) 2334–2347

that, the proposed SAD PSO is not a new PSO variant or extension,
rather a “guided PSO” algorithm, which has an identical process
with the basic PSO as guidance is only provided to gbest particle –
of the whole swarm.

In SAD PSO, we have proposed two approaches where SPSA is
explicitly used. The first approach replaces the PSO update of gbest
with the SPSA whereas the second one forms an alternative (or arti-
ficial) GB particle (the aGB), which can replace gbest if it proves its
superiority. Both SAD PSO approaches are tested over seven non-
linear functions and the experimental results demonstrated that
they achieved a superior performance over all functions regardless
of the dimension, modality, and without any exception. Especially
if the setting of the critical parameters, e.g. a and c is appropri-
ate, then a significant performance gain can be achieved by SAD
PSO. If not, SAD PSO still outperforms bPSO. This shows that SPSA,
even without proper parameter setting still performs better than
the PSO’s native gbest update. The complexity overhead in SAD PSO
is negligible, i.e. only two (or three in the second approach) extra
fitness evaluations per iteration and with the proposed low-cost
mode, it is further reduced by one. The experimental results show
that the low-cost mode does not cause a noticeable performance
loss; on the contrary, it occasionally may perform even better.

Both approaches are also integrated into MD-PSO, which defines
a new particle formation and integrates the ability of dimensional
navigation into the core of the PSO process. Recall that such flexi-
bility negates the requirement of setting the dimension in advance
since swarm particles can now converge to the global solution at
the optimum dimension, in a simultaneous manner. SAD MD-PSO is
then applied to the unsupervised clustering problem within which
the (clustering) complexity can be thought of as synonymous to
(function) modality and tested over eight synthetic data spaces in
2D with ground truth clusters. The statistical results obtained from
the clustering runs approve the superiority of SAD MD-PSO in terms
of global convergence. As in SAD PSO application for non-linear
function minimization, we have applied a fixed set of SPSA param-
eters and hence we can make the same conclusion as before about
the effect of the SPSA parameters over the performance. Further-
more, we have noticed that the performance gap widens especially
when the clustering complexity increases since the performance of
the standalone MD-PSO operation, without any proper guidance,
severely deteriorates. One observation worth mentioning is that
the second approach on SAD MD-PSO has a significant overhead
cost, which is anyway balanced by using a reduced number of par-
ticles in the experiments; therefore, the low-cost mode should be
used with a limited dimensional range for those applications with
high computational complexity.

Encouraged by the results, current plans for future work include
the application of SAD (MD-)PSO to other problem domains. Since
the SPSA only “estimates” the gradient of the error surface without
imposing any continuity, the proposed technique can be used for
discrete (and even binary) problems. Particularly, we can foresee
that those problems where a proper guidance mechanism such as
FGBF is needed but cannot be applied due to infeasibility problems
(e.g. evolutionary ANN applications by the standalone MD-PSO as
in [18] and [23]), SAD MD-PSO would be a promising solution to
further improve the performance. For those multi-objective prob-
lems (MOPs), the application of SAD PSO can be crucial since the
goal is to search for a set of Pareto-optimal solutions and hence,
the particles must follow (a set of) best guide(s) that will lead them
toward the optimal solutions. This will thus be the subject of our
future research.
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