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This paper presents a personalized long-term electrocardiogram (ECG) classification framework, which
addresses the problem within a long-term ECG signal, known as Holter register, recorded from an individ-
ual patient. Due to the massive amount of ECG beats in a Holter register, visual inspection is quite difficult
and cumbersome, if not impossible. Therefore, the proposed system helps professionals to quickly and
accurately diagnose any latent heart disease by examining only the representative beats (the so-called
master key-beats) each of which is automatically extracted from a time frame of homogeneous (similar)
beats. We tested the system on a benchmark database where beats of each Holter register have been man-
ually labeled by cardiologists. The selection of the right master key-beats is the key factor for achieving a
highly accurate classification and thus we used exhaustive K-means clustering in order to find out (near-)
optimal number of key-beats as well as the master key-beats. The classification process produced results
that were consistent with the manual labels with over 99% average accuracy, which basically shows the
efficiency and the robustness of the proposed system over massive data (feature) collections in high
dimensions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Long-term continuous electrocardiogram (ECG) monitoring and
recording, also known as Holter electrocardiogram or Holter regis-
ter (Holter, 1961), is needed for detection of some diseases, such as
cardiac arrhythmias, transient ischemic episodes and silent myocar-
dial ischemia, and for arrhythmic risk assessment of patients (Pao-
letti & Marchesi, 2006). Since visual analysis of long-term
recordings of the heart activity, with more than 100,000 ECG beats
in a single recording, is difficult to diagnose and can be highly error
prone, automated computer analysis is of major importance. Most
of the Holter classification techniques presented up-to-date mainly
suffer from the usage of sub-optimal clustering algorithms, such as
Max–Min in Syed, Guttag, and Stultz (2007), k-medians in Cuesta-
Frau, Pe’rez-Corte’s, and Andreu-Garci’a (2003) and SOMs in Lager-
holm, Peterson, Braccini, Edenbrandt, and Sörnmo (2000), some of
which require a priori setting of some thresholds or parameters,
such as h = 50 in Syed et al. (2007). Particularly, the performance
of the approach in Lagerholm et al. (2000) is limited due to small
number of Hermite expansion coefficients used for the approxima-
tion of the heartbeats. It is worth noting that although all these
techniques claim to address the problem of long-term (Holter)
ll rights reserved.
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ECG classification, none has been applied to a real Holter register,
probably due to such limitations.

In order to alleviate the problems of the aforementioned sub-
optimum clustering schemes, in this paper we used exhaustive
K-means clustering with the purpose of finding out the true (opti-
mal) number of clusters and their centroids. To assess and find out
the best K-means run among an exhaustive number of trials, we
performed cluster validity analysis, which is the assessment of
the clustering method’s output using a specific criterion for opti-
mality, i.e. the so-called clustering validity index (CVI). Hence,
we used a simple yet efficient CVI in order to assess the clustering
performance of each K-means run with a given K value, which is
also varied within a practical range. The particular K-means run
with the best CVI score is then used for determining the represen-
tative beats, or the so-called key-beats. The proposed clustering
approach was applied over a real (benchmark) dataset, which con-
tains seven long-term electrocardiogram (ECG) recordings (Physio-
Bank) to obtain semi-automatic classification (labeling). Such
ambulatory ECG recordings with a typical duration of 24–48 h,
are particularly useful for estimating the risk of ventricular arrhyth-
mias, such as premature ventricular contractions (PVCs), in patients
with heart disease, which may not be detected by a short-time
ECG (Paoletti & Marchesi, 2006). Yet any process that requires hu-
mans or even an expert cardiologist to examine more than a small
amount of data can be highly error prone. A single record of a Hol-
ter register is usually more than 100,000 beats, which makes the
visual inspection almost infeasible, if not impossible. Therefore,
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the need for automatic techniques for analyzing such a massive
data is imminent and in that, it is crucial not to leave out signifi-
cant beats since the diagnosis may depend on just a few of them.
However, the dynamic range and intra-signal variation in a typical
Holter register are quite low and abnormal beats, which may indi-
cate the presence of a potential disease, can be scattered along the
signal. So based on the proposed exhaustive K-means clustering, a
systematic approach is developed, which can summarize a long-
term ECG record by discovering the so-called master key-beats
that are the representative or the prototype beats from different
clusters. With a great reduction in effort, the cardiologist can then
perform a quick and accurate diagnosis by examining and labeling
only the master key-beats, which in duration are no longer than
15 min of ECG record (for a Holter register of 24–48 h). The expert
labels over the master key-beats are then back-propagated over
the entire ECG record to obtain a patient-specific, long-term ECG
classification.

The rest of the paper is organized as follows. Section 2 presents
the related work on ECG analysis and surveys related work on data
clustering whilst explaining the exhaustive K-means method in de-
tail. The proposed framework for personalized long-term ECG (Hol-
ter) classification is presented in detail in Section 3. Section 4
provides the experiments conducted over a benchmark Holter
dataset and discusses the results. Finally, Section 5 concludes the
paper.
2. Related work

2.1. ECG classification

Electrocardiogram (ECG) analysis has proven to be an important
method routinely used in clinical practice for continuous monitor-
ing of cardiac activities. ECG analysis can be used to detect cardiac
arrhythmias, which often arise as a consequence of a cardiac dis-
ease and may be life-threatening and require immediate therapy.
According to (Mele, 2008), with an estimated 300 millions of ECGs
performed every year, there is clearly a need for accurate and reli-
able ECG interpretation. Computer analysis of ECG data can be of
great assistance to the experts in detecting cardiac abnormalities
both for real-time clinical monitoring and long-term (24–48 h)
monitoring in intensive care unit (ICU) and ambulatory sensors.
Many computer-based methods have been proposed for auto-
mated analysis and interpretation of ECGs. However, automated
classification of ECG beats is a challenging problem as the morpho-
logical and temporal characteristics of ECG signals show significant
variations for different patients and under different temporal and
physical conditions (Hoekema, Uijen, & Oosterom, 2001). This is
the reason in practice for the underperformance of many fully
automated ECG processing systems, which hence make them unre-
liable to be widely used clinically (de Chazal & Reilly, 2006). It is
also known that accuracy and efficiency of these systems degrade
significantly for large datasets (Lee, 1989).

In the past, a number of methods have been proposed for fea-
ture extraction from ECG signals including heartbeat temporal
intervals (de Chazal, O’Dwyer, & Reilly, 2004), time-domain mor-
phological features (de Chazal, O’Dwyer, & Reilly, 2004), frequency
domain features (Minami, Nakajima, & Toyoshima, 1999), wavelet
transform features (Inan, Giovangrandi, & Kovacs, 2006), and Her-
mite transform coefficients (Lagerholm et al., 2000). Accordingly,
several techniques have been developed by researchers for ECG
data analysis. In (Lagerholm et al., 2000), a method for unsuper-
vised characterization of ECG signals is presented. Their approach
involves Hermite function representation of ECG beats (specifically
QRS complex) and self-organized neural networks (SOMs) for beat
clustering. Application to all (48) 30-min records from the MIT-BIH
arrhythmia database results in 25 clusters and by classifying each
cluster according to an expert’s annotation of one typical beat, a to-
tal misclassification error of 1.5% is achieved. The method pro-
posed in Cuesta-Frau, Pe’rez-Corte’s, and Andreu-Garci’a (2003)
consists of nonlinear temporal alignment, trace segmentation as
feature extraction and k-medians as the clustering algorithm. Its
primary goal is to extract accurately significant beats, which can
be examined by a physician for the diagnosis. From the results of
their experimental studies using 27 registers (for a total 27412
beats) from the MIT-BIH database, k-medians performs better than
the Max–Min clustering algorithm achieving a clustering error of
�7% in the best case. Syed et al. (2007) describe a new approach
for analyzing large amounts of cardiovascular data, for example
multiple days of continuous high-resolution ECG data, based on
symbolic representations of cardiovascular signals and morphol-
ogy-based Max–Min clustering. It was tested over cardiologist-
annotated ECG data (30-min recordings) from 48 patients from
the MIT-BIH arrhythmia database achieving 98.6% overall correct
classification. This approach has the advantage of using no a priori
knowledge about disease states allowing for discovery of unex-
pected events (patterns). The goal of the work in Korurek and Ni-
zam (2008) is to achieve better clustering analysis of ECG
complexes using a novel Ant Colony Optimization (ACO) based
clustering algorithm. In this study, time dependent morphological
parameters extracted from two consecutive periods of an ECG sig-
nal are used as specific features. The method is tested using a total
of 8771 ECG periods taken from the MIT-BIH database resulting in
a total sensitivity of 94.4% to all six arrhythmia types.

2.2. Exhaustive K-means clustering

As the process of identifying natural groupings in a multi-
dimensional data based on some distance metric (e.g. Euclidean),
data clustering can be divided into two main categories: hierarchi-
cal and partitional (Frigui & Krishnapuram, 1997). Each category
then has a wealth of sub-categories and different algorithmic ap-
proaches for finding the clusters. Clustering can also be performed
in two different modes: hard (or crisp) and fuzzy. In the former
mode, clusters are disjoint, non-overlapping and any data point be-
longs to a single cluster whereas in the latter case it can belong to
all the clusters with some degree of membership (Jain, Murthy, &
Flynn, 1999). K-means (Tou & Gonzalez, 1974) is a well-known
and widely used clustering method, which first assigns each data
point to the closest of the K cluster centroids and then updates
the centroids to the mean of their associated points. Starting from
a random set of K centroids, this cycle is iteratively performed until
the convergence criteria, Dkmeans < e is reached where the objective
function, DKmeans can be expressed as,

DKmeans ¼
Xk

k¼1

X

xp2ck

kck � xpk2 ð1Þ

where ck is the kth cluster center, xp is the pth data point in cluster
ck and ||�||2 is the distance metric in the Euclidean space. As a hard
clustering method, K-means is one of the fastest, i.e. O(n), method
but suffers from the following drawbacks:
� The number of clusters, K, needs to be set in advance.
� The performance of the method depends on the initial (random)

centroid positions as the method converges to the closest local
optima.
� The method is also dependent on the data distribution.

The fuzzy version of K-means, the so-called Fuzzy C-means
(FCM) (yet sometimes also called as Fuzzy K-means) was proposed
by Bezdek (1981) and has become the most popular fuzzy cluster-
ing method so far. It is a fuzzy extension of K-means whilst FCM
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usually achieves a better performance than K-means (Hammerly,
2003) and is less data dependent; however, it still suffers from
the same drawbacks, i.e. the number of clusters has to be fixed a
priori and unfortunately it may also converge to local optima (Jain
et al., 1999). Zhang and Hsu (1999) proposed a novel fuzzy cluster-
ing technique, the so-called K harmonic means (KHM), which is
less sensitive to initial conditions and promises further improve-
ments. Experimental results demonstrate that KHM outperforms
both K-means and FCM (Hammerly & Elkan, 2002; Zhang & Hsu,
1999). The Self Organizing Map (SOM) is a promising approach
for data clustering as it gives an intuitive 2D map of a multi-dimen-
sional dataset; however, similar to other deterministic approaches,
SOM performs a sub-optimal partitioning depending on the selec-
tion of the initial weights and its convergence is strictly dependent
on several parameters. Furthermore, it has a stability problem as an
input pattern may fire different output units and it is only suitable
for detecting hyperspherical clusters, which are not too likely in
high dimensions, (Jain et al., 1999). There are other variants that
are skipped. An extensive survey can be found in Jain et al.
(1999) and Pal and Biswas (1997).

As a conclusion none of the major clustering techniques can
guarantee an optimal solution for clustering massive datasets
where it is crucial to find the true number of clusters and the exact
cluster centroids. Therefore, we turn the attention back to K-means,
which is the simplest and the fastest; however, it has those afore-
mentioned drawbacks, particularly a single run of K-means, where
the centroids are randomly initialized over N–D data space, is bound
to get trapped in to the closest local optimum, and the optimal K is
an unknown that should be determined within the process. Taking
its speed advantage into account, we run K-means exhaustively
(significant number of times, e.g. >100 with random initializations)
for each K within a certain range, i.e. Kmin 6 K 6 Kmax in order to
increase significantly the probability of converging to a (near-)
optimal solution. Among all, we then use the ‘‘best” K-means run
to find out the true (number of) clusters. For the assessment of the
clustering performance, the following CVI is used to obtain compu-
tational simplicity with minimal or no parameter dependency,

f ðK; ZÞ ¼ QeKa where Qe ¼
1
K

XK

j¼1

P
8zp2Cj

kcj � zpk2

NðCjÞ
ð2Þ

where Qe is the quantization error (or the average intra-cluster dis-
tance) as the Compactness term, Ka is the Separation term, which
simply penalizes higher cluster numbers with an exponential,
Fig. 1. The overview of the proposed syst
a P 0 and N(Cj) is the number of items in cluster Cj. For a = 0, CVI
simply becomes the Qe and using a = 1 yields the simplest form
(i.e. only the numerator of Qe). On the other hand, (hard) clustering
has some constraints. Let Cj = {cj} be the set of data points assigned
to a (potential) cluster centroid. The partitions Cj;8j 2 ½1;K� should
maintain the following constraints:

(1) Each data point should be assigned to one cluster set, i.e.SK
j¼1Cj ¼ Z.

(2) Each cluster should contain at least one data point, i.e.
Cj – f/g;8j 2 ½1;K�.

(3) Two clusters should have no common data points, i.e.
Ci \ Cj ¼ f/g;8i; j 2 ½1;K� ^ i–j.

As a hard clustering method, K-means is immune to the 1st and
3rd constraints; however, it may fail the 2nd constraint (the so-
called under-clustering) especially in high dimensions. Therefore,
if any K-means run violates this constraint, that run is simply
discarded.
3. The proposed framework for personalized long-term ECG
classification

In this section we shall describe in detail the systematic ap-
proach for personalized classification of long-term ECG data. As
the overview shown in Fig. 1, the proposed system addresses the
problem within the entire life-time of a long-term ECG signal re-
corded from an individual patient, i.e. starting from data acquisi-
tion and pre-processing, to the temporal segmentation, followed
by a master key-beat extraction by two-pass exhaustive K-means
clustering and finally, classification of the entire ECG data by back
propagating the expert cardiologist labels over the master key-
beats. As a personalized approach, the objective is to minimize as
much as possible the amount of data from each individual patient
by selecting the most relevant data, which will be subject to man-
ual classification, so that the cardiologist can quickly and accu-
rately diagnose any latent disease by examining only the
representative beats (the master key-beats) each from a cluster
of homogeneous (similar) beats. This justifies the application of
the proposed clustering approach, which aims to extract the opti-
mal (number of) clusters within a diverse dataset. Recall that opti-
mality here can only be assessed according to the CVI, the feature
extraction (data representation) and the distance (similarity) metric
used. Therefore, the clustering performance can further be
em for long-term ECG classification.
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improved by using superior alternatives than the basic and simple
ones intentionally used in the current work with the sole purpose
of demonstrating the basic performance level of the proposed ap-
proach. For both passes the clustering validity assessment is per-
formed using the same CVI given in Eq. (2) with a = 0. Recall that
this is entirely parameter-free and in addition, L2 Minkowski norm
(Euclidean) is used as the distance metric in the feature space.

As shown in Fig. 1, after the data acquisition is completed, the
pre-processing stage basically contains beat detection and feature
extraction of the sampled and quantized ECG signal. Before beat
detection, all ECG signals are filtered to remove baseline wander,
unwanted power-line interference and high-frequency noise from
the original signal. This filtering unit can be utilized as part of the
heartbeat detection process (for example, the detectors based on
wavelet transforms (Li, Zheng, & Tai, 1995)). For all records, we used
the first-lead signals and the annotation information (provided
with the MIT-BIH database PhysioBank) to locate beats in ECG sig-
nals. Beat detection process is beyond the scope of this paper, as
many beat detection algorithms achieving over 99% accuracy have
been reported in the literature, e.g. Li et al. (1995) and Pan and
Tompkins (1985). Before feature extraction, the ECG signal is nor-
malized to have a zero-mean and unit variance to eliminate the ef-
fect of dc offset and amplitude biases. Following the detection of
each beat of the cardiac cycle within quasiperiodic ECG signals based
on the R-peak detection and RR-intervals, morphological and tem-
poral features are extracted as suggested in de Chazal et al. (2004)
and Hu, Palreddy, and Tompkins, 1997, and combined into a single
characteristic feature vector to represent each heartbeat. As shown
in Fig. 2, the temporal features relating to heartbeat fiducial point
intervals and morphology of the ECG signals are extracted by sam-
pling the signals. They are calculated separately from the first-lead
signals for each heartbeat. Since the detection of some arrhythmia
(such as Bradycardia, Tachycardia and premature ventricular contrac-
tion) depends on the timing sequence of two or more ECG signal
periods (Tompkins & Webster, 1981), four temporal interval fea-
tures are considered in our study. They are extracted from heart-
beat fiducial point intervals (RR-intervals), as follows:

� pre-RR-interval: the RR-interval between a given heartbeat and
the previous heartbeat,
� post-RR-interval: the RR-interval between a given heartbeat and

the following heartbeat,
Fig. 2. Sample beat waveforms, including Normal (N), PVC (V), and APC (S) AAMI (Anony
intervals (RR-intervals) and ECG morphology features (samples of QRS complex and T-w
� local average RR-interval: the average of the 10 RR-intervals sur-
rounding a heartbeat,
� average-RR interval: the mean of the RR-intervals for an ECG

recording.

In addition to temporal features, ECG morphology features are
extracted from two sampling windows in each heartbeat forma-
tion. The sampling windows are formed based on the heartbeat
fiducial points (maximum of R-wave or minimum of S-wave in
Fig. 2). Specifically, the morphology of the QRS complex is ex-
tracted using a 150-ms window and 60-Hz sampling rate, resulting
in nine ECG samples as features. The eight ECG samples represent-
ing the low-frequency T-wave morphology are extracted using a
350-ms window and 20-Hz sampling rate. Each dimension of the
17 dimensional morphological and four dimensional temporal
interval features is scaled individually within [�1, 1] interval by
applying a nonlinear function, tanhðxÞ ¼ ex�e�x

exþe�x, following a linear
transformation. The final 21 dimensional feature vector for each
heartbeat is then formed by combining those normalized 17 mor-
phological and four temporal features.

Once the 21 dimensional (21-D) feature vectors composed from
the temporal and morphological characteristics of ECG beats are
extracted, the entire ECG data is temporally segmented into fixed
size frames (segments) in order to achieve mainly two objectives.
On one hand, the massive size of ECG data makes it almost infea-
sible to perform an efficient clustering and on the other hand, out-
liers, which are significantly different from the typical (normal)
beats and thus may indicate the presence of an abnormal heart
activity, may get lost due to their low-frequency of occurrence.
Therefore, we adopt a typical approach, which is frequently per-
formed in audio processing, that is, temporally segmenting data
into homogeneous frames. Due to the dynamic characteristics of
an audio signal, the frame duration is typically chosen between
20 and 50 ms in order to get as a homogeneous signal as possible.
Accordingly, for a 24–48 h long Holter register, we have chosen
�5 min long (300 beats) duration for time segments since the in-
tra-segment variation along the time axis is often quite low. So
performing a clustering operation within such homogeneous seg-
ments will yield only one or few clusters except perhaps the tran-
sition segments where a change, morphological or temporal, occurs
on the normal form of the ECG signal. No matter how minor or
insignificant duration this abnormal change might take, in such a
mous, 1987) heartbeat classes from the MIT-BIH database. Heartbeat fiducial point
ave) are extracted.
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limited time segment, the proposed exhaustive K-means clustering
can separate those ‘‘different” beats from the normal ones and
group them into a distinct cluster. One key-beat, which is the clos-
est to the cluster centroid with respect to the distance metric used
in 21-D feature space, is then chosen as the ‘‘prototype” to repre-
sent all beats in that cluster. Since the optimal number of clusters
is extracted within each time segment, only necessary and suffi-
cient number of key-beats is thus used to represent all 300 beats
in a time segment. Note that the possibility of missing outliers is
thus reduced significantly with this approach since one key-beat
is equally selected either from an outlier or a typical cluster with-
out considering their size. Yet redundancy among the key-beats
of consecutive segments still exists since it is highly probable that
similar key-beats shall occur among different segments. This is the
main reason for having the 2nd pass, which performs the exhaus-
tive K-means clustering over key-beats to finally extract the master
key-beats. They are basically the ‘‘elite” prototypes representing all
possible physiological heart activities occurring during a long-term
ECG recording.

Since this is a personalized approach, each patient has, in gen-
eral, normal beats with possibly one or few abnormal periods, indi-
cating a potential heart disease or disorder. Therefore, ideally
speaking only a few master key-beats would be expected at the
end, each representing a cluster of similar beats from each type.
For instance one cluster may contain ventricular beats arising from
ventricular cavities in the heart and another may contain only junc-
tional beats arising from atrioventricular junction of the heart. Yet
due to the lack of discrimination power of the morphological or
temporal features or the similarity (distance) metric used, the clus-
tering operation may create more than one cluster for each anom-
aly. Furthermore, the normal beats have a broad range of
morphological characteristics (Syed et al., 2007) and within a long
time span of 24 h or longer, it is obvious that the temporal charac-
teristics of the normal beats may also significantly vary. Therefore,
it is reasonable to represent normal beats with multiple clusters
rather than only one. In short, several master key-beats may repre-
sent the same physiological type of heart activity. The presentation
of the master key-beats to the expert cardiologist can be performed
with any appropriate way, but this is a visualization detail and
hence beyond the scope of this work. Finally, the overall classifica-
tion of the entire ECG data can be automatically accomplished by
back propagating the master key-beats’ labels in such a way that
a beat closest to a particular master key-beat (using the same dis-
tance metric in 21-D feature space) is assigned the corresponding
label.
Table 1
Overall results for each patient in the MIT-BIH Long-Term database using the
proposed system. For each class, the number of correctly detected beats is shown
relative to the total beats originally present.

Patient N S V F

14046 105289/105405 1/1 9102/9765 73/95
14134 38548/38766 3/29 9711/9835 744/994
14149 144498/144534 0/0 243/264 0/0
14157 82698/83412 104/244 4334/4368 57/63
14172 57182/58315 401/1003 6526/6527 1/1
14184 77606/78096 13/39 22479/23383 11/11
15814 91129/91617 20/34 9706/9941 1601/1744
Total 596950/600145 542/1350 62101/64083 2487/2908
4. Experimental results

The systematic approach presented in Section 3 is applied to
long-term ECG data in the Physionet MIT-BIH Long-Term database
(PhysioBank), which contains six two-channel ECG signals sampled
at 128 Hz per channel with 12-bit resolution, and one three-chan-
nel ECG sampled at 128 Hz per channel with 10-bit resolution. The
duration of the seven recordings changes from 14 to 24 h each and
a total of 668, 486 heartbeats in the whole database are used in this
study. The database contains annotation for both timing informa-
tion and beat class information manually reviewed by independent
experts. The WFDB (Waveform Database) software package with li-
brary functions (from PhysioToolkit) is used for reading digitized
signals with annotations. In this study, for all records, we used
the first-lead signals and utilized the annotation to locate beats
in ECG signals. The CVI, the feature extraction and the distance
metric are already presented in Section 2.

Following the pre-processing that consists of the formation of
heartbeats using the RR-intervals and the feature extraction there-
after, the patient’s long-term ECG data is temporally segmented
into homogenous frames of 300 beats (�5 min duration) as de-
scribed in Section 3. With 100 runs for each time frame, the
exhaustive K-means clustering is then performed in 21-D feature
space to extract the true number of clusters. We used a = 0, to
make the CVI in Eq. (2) completely parameter-free. The CVI then
becomes the quantization error, Qe and the range for K is set as
2 6 K 6 25. The number of clusters, that is identical to the number
of key-beats found automatically for each time frame depends on
distinct physiological heartbeat types in each patient’s ECG record.
As a result, the proposed systematic approach by temporal seg-
mentation and the dynamic clustering technique produces such
key-beats that represent all possible physiological heart activities
in a patient’s ECG data. Therefore, finding the true number of clus-
ters by the proposed systematic approach is the key factor that dif-
ferentiates it from some earlier works such as Cuesta-Frau et al.
(2003) and Syed et al. (2007), both of which iteratively determine
this number by an empirical threshold parameter. In the proposed
method no parameters or threshold values are used.

Table 1 shows the overall results of the proposed systematic ap-
proach over all patients from the MIT-BIH Long-Term ECG data-
base. Labels manually annotated by the experts are used only for
the master key-beats selected by the proposed system. The classi-
fication of the entire ECG data, or in other words, the labeling of all
the beats contained therein is then automatically accomplished by
back propagation of the master key-beat labels, as explained in
Section 3. The performance results tabulated in Table 1 are calcu-
lated based on the differences between the labels generated by
the proposed approach and the expert supplied labels provided
with the database. The Association for the Advancement of Medical
Instrumentation (AAMI) provides standards and recommended
practices for reporting performance results of automated arrhyth-
mia detection algorithms (AAMI, 1987). In this study, according to
the AAMI recommended practice, each ECG beat is classified into
the following five heartbeat types: N (beats originating in the sinus
mode), S (supraventricular ectopic beats), V (ventricular ectopic
beats), F (fusion beats), and Q (unclassifiable beats). In the overall,
the proposed systematic approach labeled heartbeats consistent
with the cardiologist supplied annotations over 99% of the time
within the entire benchmark dataset.

From the results in Tables 1 and 2 it can be seen that the pro-
posed systematic approach performed with very high accuracy
for detection of normal (N) and ventricular (V) groups of beats.
Specifically, accurate detection of premature ventricular contrac-
tions (PVCs) from the ventricular group (V) in long-term ECG data
is essential for patients with heart disease since it may lead to pos-
sible life-threatening cardiac conditions (Iwasa, Hwa, Hassankhani,
Liu, & Narayan, 2005). On the other hand, for supraventricular ec-
topic (S) beats and some cases of fusion of ventricular (V) and fu-
sion (F) beats, the proposed method did not form a separate
cluster corresponding to each type of beat due to the fact that their
morphological and temporal features are indeed quite similar to



Table 2
Classification accuracies for each patient in the MIT-BIH Long-Term database using the proposed system.

Patient 14,046 14,134 14,149 14,157 14,172 14,184 15,814 Average
Accuracy 99.31% 98.75% 99.96% 98.99% 97.36% 98.60% 99.15% 99.04%
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normal (N) beats. Therefore, we can conclude that a more accurate
separation of both S and F beats from the N beats requires a feature
extraction technique superior to the one used in the current work.

The (average) classification error, <1%, can further be divided
into critical and non-critical errors, which can be defined as follows:
all normal (N) beats that are misclassified as one of the anomaly
classes (S, V or F) contributes to non-critical error because the ex-
pert cardiologist, who is false-alerted by the presence of such beats
that indicate a potential cardiac disease, can review them and cor-
rect the classification. This is also true for such misclassification
among the anomaly classes since those beats are anyway classified
as not normal, but with a wrong class type and thus they shall be all
subject to the expert’s attention, following with a manual correc-
tion. The critical errors occur when a beat in one of the anomaly
classes is misclassified as normal (N) since this is the case where
the expert is not alerted to a potential heart disease. So the conse-
quence of such critical errors might be fatal. According to the over-
all confusion matrix given in Table 3, the (average) critical error
level is �0.35% where the majority of the critical errors occurred
for the beats within class S due to the above mentioned reasons
specific to the feature extraction method used in this study. Over-
all, no beat is classified as Q type and in reality there are no unclas-
sifiable beats in the benchmark database.

In addition to accuracy, which measures the overall system per-
formance over all classes of beats, three other standard metrics
found in the literature (Hu et al., 1997), sensitivity (Sen), specificity
(Spe), and positive predictivity (Ppr), are used to quantify the per-
formance of the proposed system with respect to detection of each
class of beat. Their respective definitions using true positive (TP),
true negative (TN), false positive (FP), and false negative (FN), all
of which can be obtained from the confusion matrix given in Ta-
ble 3, are as follows: sensitivity is the rate of correctly classified
events among all events, Sen = TP/(TP + FN); specificity is the rate
of correctly classified nonevents among all nonevents, Spe = TN/
(TN + FP); and positive predictivity is the rate of correctly classified
events in all detected events, Ppr = TP/(TP + FP). Accuracy is usually
the most crucial metric for determining overall system perfor-
mance, however due to large variation in the number of beats from
Table 3
The overall confusion matrix.

Truth Classification results

N S V F

N 596950 2700 114 371
S 801 542 5 2
V 1368 20 62093 602
F 200 1 220 2487

Table 4
Performance of the proposed system for detection of each beat class.

Sen (%) Spe (%) Ppr (%)

N 99.47 96.49 99.60
S 40.15 99.78 16.61
V 96.89 99.38 99.46
F 85.52 99.49 71.84
different classes in the long-term ECG dataset, sensitivity, specific-
ity, and positive predictivity can too be critical and relevant perfor-
mance criteria for medical diagnosis. Table 4 presents performance
results of the proposed system in these three areas for each class of
beat. Overall, for normal (N) and ventricular (V) groups of beats the
proposed system shows high performance, however its sensitivity
and positive predictivity for supraventricular ectopic (S) beats are
low as both morphology and temporal information features for S
beats closely resemble F and N beats.

Since the proposed optimization technique is stochastic in nat-
ure, to test the repeatability and robustness of the proposed system,
we performed 10 independent runs on patient record 14172, from
which we obtained the lowest performance with the average clas-
sification accuracy 97.36%. All runs led to similar accuracy levels
with only a slight deviation of �0.3%. It is also worth mentioning
that using a computer with P5 2.4 GHz CPU, the extraction of
key-beats in a �5 min time frame typically takes less than 3 min.
Therefore, the proposed system is quite suitable for a real-time
application, that is, the key-beats can be extracted in real-time with
a proper hardware implementation during the recording of a Holter
ECG.
5. Conclusions

In this paper we proposed a long-term, personalized ECG classi-
fication system, which addresses the problem within the entire
life-time of a long-term ECG signal recorded from an individual pa-
tient and it is tested over a real (benchmark) database containing a
total of 668, 486 (manually) labeled heartbeats. To our knowledge
this is the first work ever applied to a real full Holter database;
since most of the earlier works tested only over regular half-hour
excerpts from ambulatory ECG records with duration of 30 min
or even less, from the benchmark MIT-BIH arrhythmia database
(Mark & Moody). As a personalized approach with an expert label-
ing of only 5–15 min long (clinically) distinctive ECG beats from
each patient’s long-term ECG recording, we achieved an average
of above 99% classification accuracy. In a typical 24–48 h long
Holter register, selection of the right prototype beats, which can
yield such a high accuracy level and a great reduction in effort, is
mainly due to two key operations. The first one, the so-called tem-
poral segmentation, partitions the entire data into homogenous
time segments that can be represented by minimal amount of
key-beats. The following two-pass exhaustive K-means operations
first extract the key-beats and then the master key-beats among
them. Such a delicate classification accuracy indicates that, in both
operations, the proposed approach successfully extracts the true
(number of) clusters in a 21-D feature (data) space. Although the
outcome of a single K-means run is purely random, repeating the
classification process several times over the benchmark dataset
yields almost identical accuracy levels only with insignificant vari-
ations, thus indicating a high level of robustness as well.

Moreover, such a systematic approach apparently promises a
high level of insensitivity to the length (duration) of the data since
the duration of the time segments is fixed and the number of clus-
ters (master key-beats) found in the second pass is not related
whatsoever with the number of key-beats in the first pass.
Although the proposed system is intended and purposefully devel-
oped for analysis of long-term datasets by helping professionals fo-
cus on the most relevant patterns, it can also provide efficient and
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robust solutions for much shorter ECG datasets. Besides classifica-
tion, with some proper annotation, master key-beats can also be
used for the summarization of any long-term ECG data for a fast
and efficient visual inspection, and they can further be useful for
indexing Holter databases, for a fast and accurate information re-
trieval. On the other hand, �0.35% critical error rate, although
may seem quite insignificant for a short ECG dataset, can still be
in practice high for Holter registers because it corresponds to sev-
eral hundreds of misclassified beats, some of which might be
important for a critical diagnosis. Yet recall that the optimality of
the clustering algorithm depends on the CVI, the feature extraction
method and the distance metric, in that, we purposefully use sim-
ple and typical ones so as to obtain a basic or unbiased perfor-
mance level. Therefore, by using for instance a more efficient CVI
and better alternatives for distance metric, as in Cuesta-Frau
et al. (2003) and Syed et al. (2007), performance may be improved
further. Instead of K-means, a better clustering method can also be
used; however, note that the computational complexity may then
become a serious drawback especially when used exhaustively as
in the proposed approach. For better and more discriminative fea-
tures, superior techniques can also be sought within computational
biology and information theory, all of which are subject to our fu-
ture work.
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