
Expert Systems with Applications 38 (2011) 2212–2223
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Multi-dimensional particle swarm optimization in dynamic environments

Serkan Kiranyaz ⇑, Jenni Pulkkinen, Moncef Gabbouj 1

Department of Signal Processing, Tampere University of Technology, P.O. Box 553 FIN-33101, Tampere, Finland

a r t i c l e i n f o a b s t r a c t
Keywords:
Particle swarm optimization
Multi-dimensional search
Fractional Global Best Formation
0957-4174/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.eswa.2010.08.009

⇑ Corresponding author. Tel.: +358 50 4324123; fax
E-mail addresses: serkan.kiranyaz@tut.fi (S. Kirany

Pulkkinen), moncef.gabbouj@tut.fi (M. Gabbouj).
1 This work was supported by the Academy of Finlan

Centre of Excellence Program (2006–2011).
Particle swarm optimization (PSO) was proposed as an optimization technique for static environments;
however, many real problems are dynamic, meaning that the environment and the characteristics of the
global optimum can change in time. In this paper, we adapt recent techniques, which successfully address
several major problems of PSO and exhibit a significant performance over multi-modal and non-station-
ary environments. In order to address the pre-mature convergence problem and improve the rate of PSO’s
convergence to the global optimum, Fractional Global Best Formation (FGBF) technique is used. FGBF
basically collects all the best dimensional components and fractionally creates an artificial Global Best
particle (aGB) that has the potential to be a better ‘‘guide” than the PSO’s native gbest particle. To estab-
lish follow-up of local optima, we then introduce a novel multi-swarm algorithm, which enables each
swarm to converge to a different optimum and use FGBF technique distinctively. Finally for the multi-
dimensional dynamic environments where the optimum dimension also changes in time, we utilize a
recent PSO technique, the multi-dimensional (MD) PSO, which re-forms the native structure of the swarm
particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO
process. Therefore, in a multi-dimensional search space where the optimum dimension is unknown,
swarm particles can seek for both positional and dimensional optima. This eventually pushes the frontier
of the optimization problems in dynamic environments towards a global search in a multi-dimensional
space, where there exists a multi-modal problem possibly in each dimension. We investigated both
standalone and mutual applications of the proposed methods over the moving peaks benchmark
(MPB), which originally simulates a dynamic environment in a unique (fixed) dimension. MPB is appro-
priately extended to accomplish the simulation of a multi-dimensional dynamic system, which contains
dynamic environments active in several dimensions. An extensive set of experiments show that in tradi-
tional MPB application domain, FGBF technique applied with multi-swarms exhibits an impressive speed
gain and tracks the global peak with the minimum error so far achieved with respect to the other com-
petitive PSO-based methods. When applied over the extended MPB, MD PSO with FGBF can find optimum
dimension and provide the (near-) optimal solution in this dimension.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many real-world problems are dynamic and thus require sys-
tematic re-optimizations due to system and/or environmental
changes. Even though it is possible to handle such dynamic prob-
lems as a series of individual processes via restarting the optimiza-
tion algorithm after each change, this may lead to a significant loss
of useful information, especially when the change is not too dras-
tic. Since most of such problems have a multi-modal nature, which
further complicates the dynamic optimization problem, the need
for powerful and efficient optimization techniques is imminent.
ll rights reserved.

: +358 (0)3 3115 4989.
az), jenni.pulkkinen@tut.fi (J.

d, project No. 213462 (Finnish
In the last decade the efforts have been focused on evolutionary
algorithms (EAs) (Bäck & Schwefel, 1993) such as Genetic Algo-
rithms (GA) (Goldberg, 1989), Genetic Programming (GP) (Koza,
1992), Evolution Strategies (ES), (Bäck & Kursawe, 1995) and Evo-
lutionary Programming (EP) (Fayyad, Shapire, Smyth, & Uthurus-
amy, 1996). The common point of all EAs, which have population
based nature, is that they may also avoid being trapped in local op-
tima. Thus they can find the optimum solutions; however, this is
never guaranteed.

Conceptually speaking, particle swarm optimization (PSO)
(Engelbrecht, 2005; Kennedy & Eberhart, 1995; Omran, Salman, &
Engelbrecht, 2006), which has obvious ties with the EA family, lies
somewhere in between GA and EP. Yet unlike GA, PSO has no com-
plicated evolutionary operators such as crossover, selection and
mutation and it is highly dependent on stochastic processes. PSO
is originated from the computer simulation of individuals (parti-
cles or living organisms) in a bird flock or fish school (Wilson,

http://dx.doi.org/10.1016/j.eswa.2010.08.009
mailto:serkan.kiranyaz@tut.fi
mailto:jenni.pulkkinen@tut.fi
mailto:moncef.gabbouj@tut.fi
http://dx.doi.org/10.1016/j.eswa.2010.08.009
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223 2213
1975), which basically show a natural behavior when they search
for some target (e.g. food). Their goal is, therefore, to converge to
the global optimum of a possibly non-linear function or system.
Similarly, in a PSO process, a swarm of particles (or agents), each
of which represents a potential solution to an optimization prob-
lem, navigate through the search space. The particles are initially
distributed randomly over the search space with a random velocity
and the goal is to converge to the global optimum of a function or a
system. Each particle keeps track of its position in the search space
and its best solution so far achieved. This is the personal best value
(the so-called pbest in Kennedy & Eberhart (1995)) and the PSO
process also keeps track of the global best solution so far achieved
by the swarm by remembering the index of the best particle (the
so-called gbest in Kennedy & Eberhart (1995)). During their journey
with discrete time iterations, the velocity of each agent in the next
iteration is affected by the best position of the swarm (the best po-
sition of the particle gbest as the social component), the best per-
sonal position of the particle (pbest as the cognitive component),
and its current velocity (the memory term). Both social and cogni-
tive components contribute randomly to the velocity of the agent
in the next iteration.

There are some efforts for simulating dynamic environments in
a standard and configurable way. Some early works such as (Ange-
line, 1997, 1998; Eberhart & Shi, 2001) use experimental setup
introduced by Angeline (1997). In this setup the minimum of the
three-dimensional parabolic function, f(x,y,z) = x2 + y2 + z2, is
moved along a linear or circular trajectory or randomly. Three dif-
ferent update frequencies (200, 1000 and 2000 evaluations) and
change severities (0.01, 0.1, 0.5) are used. However, this setup en-
ables testing only in a uni-modal environment. Branke (2008) has
provided a publicly available Moving Peaks Benchmark (MPB) to
enable different dynamic optimization algorithms to be tested in
a standard way in a multi-modal environment. MPB allows the cre-
ation of different dynamic fitness functions consisting of a number
of peaks with varying location, height and width. The primary
measure for performance evaluation is offline error, which is the
average difference between the optimum and the best evaluation
since the last environment change. Obviously, this value is always
a positive number and it is zero only for perfect tracking. Several
PSO methods have been developed and tested using MPB such as
(Blackwell & Branke, 2004a; Blackwell & Branke, 2004b; Li, Branke,
& Blackwell, 2006; Mendes & Mohais, 2005). Particularly Blackwell
& Branke (2004a) proposed a successful multi-swarm approach.
The idea behind this is that different swarms can converge to dif-
ferent peaks and track them when the environment changes. The
swarms interact only by mutual repulsion that keeps any two
swarms from converging to the same peak.

Similar to the aforementioned EAs, PSO might exhibit some ma-
jor problems and severe drawbacks such as parameter dependency
(Lovberg & Krink, 2002) and loss of diversity (Riget & Vesterstrom,
2002). Particularly the latter phenomenon increases the probabil-
ity of being trapped in a local optimum and it is the main source
of premature convergence especially when the dimensionality of
the search space is large (Van den Bergh, 2002) and the problem
to be optimized is multi-modal (Esquivel & Coello, 2003; Riget &
Vesterstrom, 2002). Another reason for premature convergence is
that particles are flown through a single point, which is (randomly)
determined by gbest and pbest positions and this point is not even
guaranteed to be a local optimum (Van den Bergh & Engelbrecht,
2002). Since PSO was proposed for static problems in general, ef-
fects of such drawbacks eventually become much more severe
for dynamic environments. Various modifications and PSO variants
have been proposed in order to address these problems such as
(Abraham, Das, & Roy, 2007; Chen & Li, 2007; Chen, Peng, & Jian,
2007; Christopher & Seppi, 2004; Clerc, 1999; Eberhart, Simpson,
& Dobbins, 1996; Higashi & Iba, 2003; Ince, Kiranyaz, & Gabbouj,
2009; Janson & Middendorf, 2005; Kaewkamnerdpong & Bentley,
2005; Krohling & Coelho, 2006; Liang & Qin, 2006; Li et al., 2006;
Lovberg, 2002; Lovberg & Krink, 2002; Mendes, Kennedy, & Neves,
2004; Peng, Reynolds, & Brewster, 2003; Peram, Veeramachaneni,
& Mohan, 2003; Ratnaweera, Halgamuge, & Watson, 2003; Ratn-
aweera, Halgamuge, & Watson, 2002; Riget & Vesterstrom, 2002;
Richards & Ventura, 2003; Shi & Eberhart, 1998; Shi & Eberhart,
2001; Van den Bergh & Engelbrecht, 2002; Van den Bergh & Enge-
lbrecht, 2004; Xie, Zhang, & Yang, 2002a; Xie, Zhang, & Yang,
2002b; Xie, Zhang, & Yang, 2002c; Yasuda, Ide, & Iwasaki, 2003;
Zhang & Xie, 2003). Such methods usually try to improve the diver-
sity among the particles and the search mechanism either by
changing the update equations towards more diversified versions
or adding more randomization to the system (to particle velocities,
positions, etc.) or simply resetting some or all of them randomly
when some conditions are met. However, their performance
improvement might be quite limited even in static environments
and most of them use more parameters and/or thresholds to
accomplish this whilst making the PSO variant even more param-
eter dependent. Therefore, they do not yield set a reliable solution
for dynamic environments, which usually have a multi-modal nat-
ure and high dimensionality.

Another major drawback of the basic PSO and the aforemen-
tioned variants is that they can only be applied to a search (solution)
space with a fixed dimensionality. However, in many optimization
problems, the optimum dimension is also unknown (e.g. data clus-
tering, object extraction, optimization of the dynamic functions,
etc.) and should thus be determined within the PSO process. Take
for example the color-based image segmentation as a data clustering
application, where the optimum dimension of the solution space
corresponds to the true number of clusters (segments) in the data
(color) space, which cannot be known beforehand. In such a case
the PSO process should perform a multi-dimensional search in order
to determine both the true (optimum) number of clusters and the
optimum centroid location for each cluster. The problem becomes
even more challenging when it is applied over a dynamic environ-
ment such as a video where both the number of clusters (segments)
and their centroids (dominant colors) are changing over time. Yet
since the change between consecutive frames is not drastic but
rather minor, instead of performing a new clustering in the color do-
main via multi-dimensional search for each frame in the video, for a
new (next) frame, the PSO process can establish a follow-up mech-
anism to track the optimum (number of) clusters (segments) from
the previous frame. Therefore, using the past history about global
and local optima becomes a crucial information to search for the
current optima (both dimension and location).

In this paper, we shall first introduce a recent technique that
significantly improves the global convergence performance of
PSO by forming an artificial Global Best particle (aGB) fractionally.
This algorithm, the so-called Fractional Global Best Formation
(FGBF), collects the best dimensional components from each
swarm particle and fractionally creates the aGB, which will replace
gbest as a guide for the swarm, if it turns out to be better than the
swarm’s native gbest particle. We then propose a novel multi-
swarm algorithm, which combines multi-swarms with the FGBF
technique so that each swarm can apply FGBF distinctively. Via
applying the proposed techniques on conventional MPB we shall
show that they can find and track the global peak in an efficient
way and usually in earlier stages. For the multi-dimensional dy-
namic environments where the optimum dimension also changes
over time, we shall then introduce a multi-dimensional (MD) PSO
technique, which re-forms the native structure of swarm particles
in such a way that they can make inter-dimensional passes with a
dedicated dimensional PSO process. Therefore, in a multi-dimen-
sional search space where the optimum dimension is unknown,
swarm particles can seek for both positional and dimensional

2214 S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223
optima. This eventually pushes the frontier of optimization prob-
lems in dynamic environments towards a global search in a mul-
ti-dimensional space, where the problems in each dimension are
possibly multi-modal and dependent on each other in a certain
manner. Since the conventional MPB is created for a unique (fixed)
dimensionality, we shall propose multi-dimensional extension of
the benchmark in which there exists a unique optimum dimension
where the global (highest) peak is located. Also the optimum
dimension can change over time within a dimension range. In or-
der to provide a certain degree of dependency among individual
dimensions, peaks in different dimensions share the common coor-
dinates of the peak locations. This is basically accomplished by
subtracting a penalty term, whose magnitude depends on a dimen-
sional error, from the landscape height in non-optimal dimensions.
As a result, over the extended MPB, MD PSO can seek for both the
optimum dimension and the global peak on it simultaneously.
FGBF is an add-on to both multi-swarms and MD PSO which can
enhance their performance. We shall show when the multi-dimen-
sional search is needed, the best performance is achieved by their
mutual operation. In recent works, both MD PSO and FGBF have
been successfully applied over static problems such as general data
clustering (Kiranyaz, Ince, Yildirim, & Gabbouj, 2010) and evolu-
tionary artificial neural networks (Ince et al., 2009), respectively.

The rest of the paper is organized as follows. Section 2 surveys
related work on PSO and MPB. The proposed techniques, MD PSO,
multi-swarms with FGBF and their applications over the (ex-
tended) MPB are presented in detail in Section 3. Section 4 pro-
vides the experiments conducted and discusses the results.
Finally, Section 5 concludes the paper.

2. Related work

2.1. The basic PSO algorithm

In the basic PSO method, (bPSO), a swarm of particles flies
through an N-dimensional search space where each particle repre-
sents a potential solution to the optimization problem. Each parti-
cle with index a in the swarm, n = {x1, . . . ,xa ,. . . ,xS}, is represented
by the following characteristics:

xa,j(t): jth dimensional component of the position of particle a,
at time t.
va,j(t): jth dimensional component of the velocity of particle a,
at time t.
ya,j(t): jth dimensional component of the personal best (pbest)
position of particle a, at time t.
ŷjðtÞ: jth dimensional component of the global best position of
the swarm, at time t.

Let f denote the fitness function to be optimized. Without loss of
generality assume that the objective is to find the maximum of f in
an N-dimensional space. Then the personal best of particle a can be
updated at iteration t as,

ya;jðtÞ ¼
ya;jðt � 1Þ if f ðxaðtÞÞ < f ðyaðt � 1ÞÞ
xa;jðtÞ else

� �
j ¼ 1;2; . . . ;N

ð1Þ

Since gbest is the index of the GB particle, ŷðtÞ ¼ ygbestðtÞ. Then at
each iteration in a PSO process, positional updates are performed
for each dimensional component, j 2 [1,N] and for each particle,
a 2 [1,S], as follows:

va;jðt þ 1Þ ¼ wðtÞva;jðtÞ þ c1r1;jðtÞðya;jðtÞ � xa;jðtÞÞ
þ c2r2;jðtÞðŷjðtÞ � xa;jðtÞÞ

xa;jðt þ 1Þ ¼ xa;jðtÞ þ va;jðt þ 1Þ
ð2Þ
where w is the inertia weight, (Shi & Eberhart, 1998) and c1, c2 are
the acceleration constants which are usually set to 1.49 or 2. r1,j

� U(0,1) and r2,j � U(0,1) are random variables with uniform distri-
bution. Recall from the earlier discussion that the first term in the
summation is the memory term, which represents the contribution
of the previous velocity over the current velocity, the second term is
the cognitive component, which represents the particle’s own expe-
rience and the third term is the social component through which the
particle is ‘‘guided” by the gbest particle towards the GB solution so
far obtained. Although the use of inertia weight, w, was later added
by Shi & Eberhart (1998), into the velocity update equation, it is
widely accepted as the basic form of PSO algorithm. A larger value
of w favors exploration while a small inertia weight favors exploita-
tion. As originally introduced, w is often linearly decreased from a
high value (e.g. 0.9) to a low value (e.g. 0.4) during iterations of a
PSO run. Depending on the problem to be optimized, PSO iterations
can be repeated until a specified number of iterations, say IterNo, is
exceeded, velocity updates become zero, or the desired fitness score
is achieved (i.e. f > eC). Accordingly the general pseudo-code of the
bPSO can be given as follows:
bPSO (termination criteria: {IterNo,eC, . . .}, Vmax)

1. For "a 2 [1,S] do:

1.1 Randomize xa(1), va(1)

1.2 Let ya(0) = xa(1)

1.3 Let ŷð0Þ ¼ xað1Þ
2. End For.

3. For " t 2 [1, IterNo] do:

3.1 For "a 2 [1,S] do:
3.1.1 Compute ya(t) using (1)

3.1.2 If ðf ðyaðtÞÞ > maxðf ðŷðt � 1Þ; f ðyiðtÞÞÞ
16i<a

Þ then

gbest = a and ŷðtÞ ¼ yaðtÞ

3.2 End For.

3.3 If any termination criterion is met, then Return.

3.3 For "a 2 [1,S] do:
3.4.1 For " j 2 [1,N] do:
3.4.1.1 Compute va,j(t + 1) using (2)

3.4.1.2 If (jva,j(t + 1)j > Vmax) then clamp it to

jva,j(t + 1)j = Vmax

3.4.1.3 Compute xa,j(t + 1) using (2)
3.4.2 End For.
3.5 End For.

4. End For.

5. Return.
Velocity clamping also called ‘‘dampening” with the user-de-
fined maximum range Vmax (and �Vmax for the minimum) as in
Step 3.4.1.2 is one of the earliest attempts to control or prevent
oscillations. Such oscillations are indeed crucial since they broaden
the search capability of the swarm; however, they have a potential
drawback of oscillating continuously around the optimum point.
Therefore, such oscillations should be dampened and the conver-
gence is achieved with the proper use of the velocity clamping
and the inertia weight. Furthermore, this is the bPSO algorithm
where the particle gbest is determined within the entire swarm.
Another major topological approach, the so-called lbest, also exists
where the swarm is divided into overlapping neighborhoods of
particles and instead of defining gbest and ŷðtÞ ¼ ygbestðtÞ over the
entire swarm, for a particular neighborhood Ni, the (local) best par-
ticle is referred as lbest with the position ŷiðtÞ ¼ ylbestðtÞ. Neighbors
can be defined with respect to particle indices (i.e. i 2 [j � l,. . .,j + l]
or by using some other topological forms (Suganthan, 1999). It is

S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223 2215
obvious that gbest is a special case of lbest scheme where the
neighborhood is defined as the entire swarm. The lbest approach
is one of the earlier attempts, which usually improves the diver-
sity; however, it is slower than the gbest approach. PSO variants
for dynamic environments will be reviewed in Section 2.3.

2.2. Moving Peaks Benchmark

Conceptually speaking, MPB developed by Branke (2008), is a
simulation of a configurable dynamic environment changing over
time. The environment consists of a certain number of peaks with
varying locations, heights and widths. The dimensionality of the
fitness function is fixed in advance and thus is an input parameter
of the benchmark. An N-dimensional fitness function with m peaks
is expressed as,

Fð~x; tÞ ¼max Bð~xÞ; max
p¼1...m

Pð~x; hpðtÞ;wpðtÞ;~cpðtÞÞ
� �

ð3Þ

where Bð~xÞ is a time variant basis landscape, whose utilization is op-
tional, and P is the function defining the height of the pth peak at
location ~x, where each of the m peaks can have its own dynamic
parameters such as height, hp(t), width, wp(t) and location vector
of the peak center,~cpðtÞ. Each peak parameter can be initialized ran-
domly or set to a certain value and after a time period (number of
evaluations), Te, at time (evaluation) t, a change over a single peak,
p, can be defined as follows:

hpðtÞ ¼ hpðt � TeÞ þ rDh
wpðtÞ ¼ wpðt � TeÞ þ rDw
~cpðtÞ ¼~cpðt � TeÞ þ~vpðtÞ

ð4Þ

where r � U(0,1), Dh and Dw are the heights and width change
severities, respectively, and ~vpðtÞ is a shift vector, which is a linear
combination of a random vector and the previous shift vector,
~vpðt � TeÞ. The shift vector ~vpðtÞ is always normalized to length
vlength, which is called change severity. Accordingly, the shift vec-
tor ~vpðtÞ can be defined as

~vpðtÞ ¼ v length
ð1� kÞ~rðtÞ þ k~vpðt � TeÞ
kð1� kÞ~rðtÞ þ k~vpðt � TeÞk

;

where k is the correlation factor, which defines the level of location
change randomness. The types and number of peaks along with their
initial heights and widths, environment (search space) dimension
and size, change severity, level of change randomness and change
frequency can be defined. To facilitate standard comparative evalu-
ations among different algorithms, three standard settings of such
MPB parameters, the so-called Scenarios, have been defined. Scenario
2 is the most widely used and it allows a range of values, among
them the following are commonly used: number of peaks = 10,
change severity vlength = 1.0, correlation value k = 0.0 and peak
change frequency = 5000. In Scenario 2 no basis landscape is used
and the peak type is a simple cone with the following expression,

Pð~x;hpðtÞ;wpðtÞ;~cpðtÞÞ¼hpðtÞ� spðtÞk~x�~cpðtÞk where

spðtÞ¼
hpðtÞ
wpðtÞ

and k~x�~cpðtÞk¼

ffiXN

i¼1

ðxi�cpiÞ2
vuut 8xi 2~x; 8cpi 2~cpðtÞ

ð5Þ
where sp(t) is the slope and k.k is the Euclidean distance between
two N-dimensional vectors, ~x and ~cpðtÞ. More detailed information
on MPB and the rest of the parameters used in this benchmark
can be obtained from Branke (2008).

2.3. Multi-swarm PSO

The main problem of using the basic PSO algorithm in a dy-
namic environment is that eventually the swarm will converge to
a single peak – whether global or local. When another peak be-
comes the global maximum as a result of an environmental
change, it is likely that the particles keep circulating close to the
peak to which the swarm has converged and thus they cannot find
the new global maximum. Blackwell and Branke have addressed
this problem in Blackwell & Branke (2004a, 2004b) by introducing
multi-swarms that are actually separate PSO processes. Each parti-
cle is now a member of one of the swarms only and it is unaware of
other swarms. The main idea is that each swarm can converge to a
separate peak. Swarms interact only by mutual repulsion that
keeps them from converging to the same peak. For a single swarm
it is essential to maintain enough diversity so that the swarm can
track small location changes of the peak to which it is converging.
For this purpose Blackwell and Branke introduced charged and
quantum swarms, which are analogues to an atom having a nu-
cleus and charged particles randomly orbiting it. The particles in
the nucleus take care of the fine tuning of the result while the
charged particles are responsible of detecting the position changes.
However, it is clear that, instead of charged or quantum swarms,
some other method can also be used to ensure sufficient diversity
among particles of a single swarm so that the peak can be tracked
despite of small location changes.

As one might expect, the best results are achieved when the
number of swarms is set equal to the number of peaks. However,
it is then required that the number of peaks is known beforehand.
Blackwell (2007) presents self-adapting multi-swarms, which can
be created or removed during the PSO process and, therefore, it
is not necessary to fix the number of swarmsbeforehand.

The repulsion between swarms is realized by simply re-initial-
izing the worse of the two swarms if they move within a certain
range from each other. Using physical repulsion could lead to equi-
librium, where swarm repulsion prevents both swarms from get-
ting close to a peak. A proper limit closer to which the swarms
are not allowed to move, rrep is attained by using the average radius
of the peak basin, rbas. If p peaks are evenly distributed in XN,
rrep = rbas = X/p1/N. Detailed information about multi-swarms can
be obtained in Blackwell & Branke (2004a, 2004b).
3. The proposed optimization technique for dynamic
environments

In this section, we first introduce the multi-swarms with FGBF
technique and its application to MPB. The multi-dimensional
extension of PSO, the so-called MD PSO, will be detailed next. Fi-
nally we show their mutual application over the (extended) MPB.
3.1. FGBF technique

For those problems where dimensional fitness evaluation is
possible, Fractional Global Best Formation (FGBF) can be used to
avoid the pre-mature convergence by providing a significant diver-
sity obtained from a proper fusion of the swarm’s best components
(the individual dimension(s) of the current position of each particle
in the swarm). Some problems such as data clustering, on the other
hand, can exhibit some kind of non-trivial interdependency among
the dimensional components of the search space. For these cases, a
proper approximation for the fractional fitness evaluation, if possi-
ble, should be designed to perform FGBF. In either case, FGBF frac-
tionally creates an artificial GB particle, called aGB, at each
iteration in a PSO process by selecting the best particle (dimen-
sional) components from the entire swarm. Therefore, especially
during the initial steps, aGB can be and, most of the time, is a better
alternative than the native gbest particle since it has the advantage
of assessing each dimension of every particle in the swarm individ-
ually, and forming the aGB particle fractionally by using the best

Fig. 1. A sample FGBF operation in 2D space.

2216 S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223
components among them. This process naturally uses the available
diversity among individual dimensional components and thus it
can prevent the swarm from being trapped in local optima due
to its ongoing and ever-varying particle creations. At each iteration
FGBF is performed after the assignment of the swarm’s gbest parti-
cle (i.e. performed between Steps 3.2 and 3.3 in the pseudo-code of
bPSO) and, if aGB turns out to be better than gbest, the personal best
location of the gbest particle is replaced by the location of the aGB
particle and, since ŷðtÞ ¼ ygbestðtÞ, the artificially created particle is
thus used to guide the swarm through the social component in (2).
In other words, the swarm will be guided only by the best (winner)
between the native gbest and aGB particle at any time. In the next
iteration, a new aGB particle is created and it will again compete
against the personal best of gbest (which can be also a former
aGB now).

Suppose that for a swarm n, FGBF is performed in a PSO process
in dimension N. Recall from the earlier discussion that in a partic-
ular iteration, t, each PSO particle, a, has the following compo-
nents: position (xa,j(t)), velocity (va,j(t)) and the personal best
position (ya,j(t)), j 2 [1,N]. As the aGB particle is fractionally (re-)
created from the individual dimensions of some swarm particles
at each iteration, it does not need the velocity term and, therefore,
it does not have to remember its personal best location.

Let f(a, j) be the dimensional fitness score of the jth component
of the position of particle a and f(gbest, j) be the dimensional fitness
score of the jth component of the personal best position of the
gbest particle. Suppose that all dimensional fitness scores (f(a, j),
"a 2 [1,S] and f(gbest, j)) can be computed in Step 3.1 and FGBF
can then be plugged in between Steps 3.2 and 3.3 of bPSO’s pseu-
do-code. Accordingly, the pseudo-code for FGBF can be expressed
as follows:
FGBF in bPSO (n, f(a, j))

1. Let a[j] = arg maxa2nj2[1,N] (f(a, j)) be the index of particle

yielding the maximum f(a, j) for the jth dimensional

component.

2. xaGB,j(t) = xa[j],j(t) for " j 2 [1,N]

3. If f(gbest, j) > f(a[j], j) then xaGB;jðtÞ ¼ ygbest;jðtÞ
4. If (f(xaGB(t)) > f(ygbest(t))) then ygbestðtÞ ¼ xaGBðtÞ and

ŷðtÞ ¼ xaGBðtÞ
5. Return.
Note that Step 1 along with the computation of f(a, j) depends
entirely on the optimization problem. It keeps track of partial fit-
ness contributions from each individual dimensional component
of each particle’s position (the potential solution). Take for instance
the function minimization problem as illustrated in Fig. 1 where
2D space is used for illustration purposes. In the figure, three par-
ticles in a swarm are ranked as the 1st (or the gbest), the 3rd and
the 8th with respect to their proximity to the target position (or
the global solution) of some function. Although gbest particle (i.e.
1st rank particle) is the closest in the overall sense, the particles
ranked 3rd and 8th provide the best x and y dimensions (closest
to the target’s respective dimensions) in the entire swarm and
hence the aGB solution via FGBF yields a better (closer) particle
than the swarm’s native gbest. Particularly in Kiranyaz et al.
(2010), the usage and merits of FGBF for the optimization of several
multi-modal, non-linear (benchmark) functions in high dimen-
sions have been shown where all MD PSO runs with FGBF found
the global minimum at the target dimension for all runs, over all
functions, regardless of the dimension, swarm size and modality,
and without any exception. This is the case where the function
to be optimized is known a priori and FGBF is easier to use. For
those problems where the knowledge of how each fractional
dimension contributes to the overall fitness is no longer available
(i.e. black-box problems), FGBF can still be adapted with respect
to the problem, e.g. in Kiranyaz et al. (2010), see the usage of FGBF
over general data clustering where the optimum dimension of the
search space (number of clusters) is also unknown and hence MD
PSO with the proper application of FGBF is used to find the opti-
mum (number of) clusters in a data space.
3.2. FGBF application for MPB

The previous section introduced the principles of FGBF theory
within a bPSO process in a single dimension and referred to some
of its applications in other domains, each of which is in a static
environment. However, in dynamic environments this approach
eventually leads the swarm to converge to a single peak (whether
global or local) and therefore, it may lose its ability to track other
peaks. As any of the peaks can become the optimum peak as a re-
sult of environmental changes, it is likely to lead to a suboptimal
solution. This is the basic reason of utilizing the multi-swarms
along with the FGBF operation. As described in Section 2.3, the mu-
tual repulsion between swarms is performed and for computing
the distance between two swarms, we use the distance between
the swarms’ global best locations. Instead of charged or quantum
swarms, FGBF is the mechanism alternatively used to provide nec-
essary diversity and thus to enable peak tracking if peaks’ location
are changed. We also re-initialize the particle velocities after each
environment change to further contribute to the diversity.

A particle with index a in a swarm n, represents a potential solu-
tion and therefore, the jth component of an N-dimensional point (xj,
j 2 [1,N]) is stored in its positional component, xa,j(t), at a time t. The
aim of the PSO process is to search for the global optimum point,
which maximizes Pð~x;hpðtÞ;wpðtÞ;~cpðtÞÞ, in other words, finding
the global (highest) peak in MPB environment. Recall that in
Scenario 2 of MPB the peaks used are cone shaped, as given in (5).
Since in (5), hp(t) and sp(t) are both set by MPB, finding the highest
peak is equivalent to minimizing the k~x�~cpðtÞk term, yielding
f(a, j) = �(xj � cpj)2. Step 3.1 in bPSO’s pseudo-code computes the
(dimensional) fitness scores (f(a, j), f(gbest, j)) of the jth components
(xa,j,ygbest,j) and in Step 2 of the FGBF process, the dimensional
component yielding the maximum f(a, j) is then placed in aGB. In
Step 3 these dimensional components are replaced by dimensional
components of the personal best position of the gbest particle, if they
yield higher dimensional fitness scores. We do not expect that

S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223 2217
dimensional fitness scores can be evaluated with respect to the opti-
mum peak since this requires the a priori knowledge of the global
optimum, instead we use either the current peak where the particle
resides on or the peak to which the swarm is converging (swarm
peak). We shall thus consider and evaluate both modes separately.
3.3. MD PSO algorithm

Instead of operating in a fixed dimension N, the MD PSO algo-
rithm is designed to seek both positional and dimensional optima
within a dimension range, (Dmin 6 d 6 Dmax). In MD PSO each par-
ticle has two sets of components, each of which is subjected to one
of two independent and consecutive processes. The first one is the
regular positional PSO, i.e. the traditional velocity updates and due
positional shifts in a d-dimensional search space. The second one is
the dimensional PSO, which allows the particle to navigate through
dimensions. Accordingly, each particle keeps track of its last posi-
tion, velocity and personal best position (pbest) in a particular
dimension so that when it re-visits the same dimension at a later
time, it can perform its regular ‘‘positional” fly using this informa-
tion. The dimensional PSO process of each particle may then move
the particle to another dimension where it will remember its ear-
lier positional status and keep ‘‘flying” within the positional PSO
process in this dimension, and so on. The swarm, on the other
hand, keeps track of the gbest particles in all dimensions, each of
which respectively indicates the best (global) position so far
achieved and can thus be used in the regular velocity update equa-
tion for that dimension. Similarly the dimensional PSO process of
each particle uses its personal best dimension in which the per-
sonal best fitness score has so far been achieved. Finally, the swarm
keeps track of the global best dimension, dbest, among all the per-
sonal best dimensions. The gbest particle in dbest dimension repre-
sents the optimum solution and dimension, respectively.

The MD PSO process at time (iteration), is represented by the
following characteristics:

xxxdaðtÞ
a;j ðtÞ: jth component (dimension) of the position of particle

a, in dimension xda(t).
vxxdaðtÞ

a;j ðtÞ: jth component (dimension) of the velocity of particle
a, in dimension xda(t).
xyxdaðtÞ

a;j ðtÞ: jth component (dimension) of the personal best
(pbest) position of particle a, in dimension xda(t).
gbest (d): Global Best particle index in dimension d.
xŷd

j ðtÞ: jth component (dimension) of the global best position of
swarm, in dimension d.
xda(t): current dimension of particle a.
vda(t): dimensional velocity of particle a.
x~daðtÞ: personal best dimension of particle a.
Fig. 2. Sample MD PSO (right) vs. bPSO (left) particle structures. For MD PSO {Dmin =
Fig. 2 shows sample MD PSO and bPSO particles with indices a.
bPSO particle that is at a (fixed) dimension, N = 5, contains only
positional components whereas MD PSO particle contains both
positional and dimensional components, respectively. In the figure
the dimension range for the MD PSO is between 2 and 9, therefore
the particle contains eight sets of positional components. In this
example the current dimension where the particle with index a re-
sides is 2 (xda(t) = 2) whereas its personal best dimension is 3
ðx~daðtÞ ¼ 3Þ. Therefore, at time t, a positional PSO update is first
performed over the positional elements, xx2

aðtÞ and then the parti-
cle may move to another dimension with respect to the dimen-
sional PSO. Recall that each positional element, xx2

a;jðtÞ; j 2 f1;2g,
represents a potential solution in the data space of the problem.

Let f denote the fitness function that is to be optimized within a
certain dimension range, [Dmin,Dmax]. In accordance with the scope
of the current work and without loss of generality assume that the
objective is to find the maximum (position) of f in the optimum
dimension within a multi-dimensional search space. Assume that
the particle a visits (back) the same dimension after T iterations
(i.e. xda(t) = xda(t + T)), then the personal best position can be up-
dated in iteration t + T as follows,

xyxdaðtþTÞ
a;j ðt þ TÞ ¼

xyxdaðtÞ
a;j ðtÞ

if f xxxdaðtþTÞ
a ðt þ TÞ

� �
< f xyxdaðtÞ

a ðtÞ
� �

xxxdaðtþTÞ
a;j ðt þ TÞ

else

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

j ¼ 1;2; . . . ; xdaðt þ TÞ ð6Þ

To overcome the necessity to remember the iteration numbers,
when a particle has visited a certain dimension last time, the fol-
lowing updates are performed for each dimensional component ex-
cept xda(t), i.e. j 2 [1,d] where d 2 [Dmin,Dmax] � {xda(t)} and for
each particle, a 2 [1,S],

xyd
a;jðtÞ ¼ xyd

a;jðt � 1Þ; xŷd
j ðtÞ ¼ xŷd

j ðt � 1Þ;
for 8d 2 ½Dmin;Dmax� � fxdaðtÞg

ð7Þ

Furthermore, the personal best dimension of particle a can be up-
dated in iteration t + 1 as follows,

x~daðtÞ ¼
x~daðt � 1Þ if f xxxdaðtÞ

a ðtÞ
� �

< f xyx~daðt�1Þ
a ðt � 1Þ

� �
xdaðtÞ else

()

ð8Þ

Recall that gbest (d) is the index of the Global Best particle in dimen-
sion d and so xŷdðtÞ ¼ xyd

gbestðdÞðtÞ. For a particular iteration t, and for
a particle with index a 2 [1,S], first the positional components are
updated in its current dimension, xda(t) and then the dimensional
2,Dmax = 9} and at the current time t, xda(t) = 2 and x~daðtÞ ¼ 3. For bPSO N = 5.

2218 S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223
update is performed to determine its next dimension, xda(t + 1). The
positional update is performed for each dimension component,
j 2 [1,xda(t)], as follows:

vxxdaðtÞ
a;j ðt þ 1Þ ¼ wðtÞvxxdaðtÞ

a;j ðtÞ þ c1r1;jðtÞ xyxdaðtÞ
a;j ðtÞ � xxxdaðtÞ

a;j ðtÞ
� �

þ c2r2;jðtÞ xŷxdaðtÞ
j ðtÞ � xxxdaðtÞ

a;j ðtÞ
� �

xxxdaðtÞ
a;j ðt þ 1Þ ¼ xxxdaðtÞ

a;j ðtÞ þ Cvx vxxdaðtÞ
a;j ðt þ 1Þ; fVmin;Vmaxg

h i
xxxdaðtÞ

a;j ðt þ 1Þ Cxx xxxdaðtÞ
a;j ðt þ 1Þ; fXmin;Xmaxg

h i
ð9Þ

where Cxx[.,.] � Cvx[.,.] are the clamping operators applied over each
positional component, xxd

a;j and vxd
a;j. Cxx[.,.] may or may not be ap-

plied depending on the optimization problem but Cvx[.,.] is basically
needed to avoid exploding. Each operator can be applied in two dif-
ferent ways, such as,

Cxx xxd
a;jðtÞ; fXmin;Xmaxg

h i
¼

xxd
a;jðtÞ if Xmin 6 xxd

a;jðtÞ 6 Xmax

Xmin if xxd
a;jðtÞ < Xmin

Xmax if xxd
a;jðtÞ > Xmax

8><
>:

9>=
>;
ð10:aÞ

Cxx xxd
a;jðtÞ;fXmin;Xmaxg

h i
¼ xxd

a;jðtÞ if Xmin6 xxd
a;jðtÞ6Xmax

UðXmin;XmaxÞ else

()

ð10:bÞ

where option (a) is a simple thresholding to the range limits and (b)
re-initializes randomly the jth positional component (j 6 d).

Note that the particle’s new position, xxxdaðtÞ
a ðt þ 1Þ, will still be in

the same dimension, xda(t); however, the particle may jump to an-
other dimension afterwards. Therefore, for all the other dimensions
in the dimensional range except xda(t), i.e. "d 2 {Dmin,. . .,Dmax} �
{xda(t)}, the following updates are necessary for each dimensional
component, j 2 [1,. . .,d] and for each particle, a 2 [1,S]:

vxd
a;jðt þ 1Þ ¼ vxd

a;jðtÞ; xxd
a;jðt þ 1Þ ¼ xxd

a;jðtÞ
for8d 2 ½Dmin;Dmax� � fxdaðtÞg

ð11Þ

The dimensional updates are computed with the following
equations:

vdaðt þ 1Þ ¼ bvdaðtÞ þ c1r1ðtÞðx~daðtÞ � xdaðtÞÞ
þ c2r2ðtÞðdbest � xdaðtÞÞc

xdaðt þ 1Þ ¼ xdaðtÞ þ Cvd½vdaðt þ 1Þ; fVDmin;VDmaxg�
xdaðt þ 1Þ Cxd½xdaðt þ 1Þ; fDmin;Dmaxg�

ð12Þ

where b.c is the floor operator, Cxd [.,.] and Cvd[.,.] are the clamping
operators applied over dimensional components, xda(t) and vda(t),
respectively. As in (2), we employ the inertia weight for positional
velocity update; however, we have witnessed no benefit of using
it for dimensional PSO, and hence we left it out of (12) for the sake
of simplicity. Cvd[.,.] is similar to Cvx[.,.], which is basically applied to
avoid exploding and we use the basic thresholding for this, ex-
pressed as follows:

Cvd½vdaðtÞ;fVDmin;VDmaxg� ¼
vdaðtÞ if VDmin 6 vdaðtÞ6 VDmax

VDmin if vdaðtÞ< VDmin

VDmax if vdaðtÞ> VDmax

8<
:

9=
;

ð13Þ
Cxd[.,.], on the other hand, is a mandatory clamping operator, which
keeps the dimensional jumps within the dimension range of the
problem, [Dmin, Dmax]. Furthermore within Cxd[.,.], an optional in-
flow buffering mechanism can also be implemented. This can be a
desired property, which allows only sufficient number of particles
in a certain dimension and thus avoids the redundancy. Particularly
dbest and dimensions within the close proximity have a natural
attraction and without such buffering mechanism, the majority of
swarm particles may be hosted within this local neighborhood
and hence other dimensions might encounter a severe depletion.
To prevent this, the buffering mechanism should control the in-flow
of the particles (by the dimensional velocity updates) to a particular
dimension. On some early bPSO implementations over problems
with low (and fixed) dimensions, 15–20 particles were usually suf-
ficient for a successful operation. However, in high dimensions this
may not be so since more particles are usually needed as the dimen-
sion increases. Therefore, we empirically set the limit to be propor-
tional to the solution space dimension and not less than 15. At time
t, let Pd(t) be the number of particles in dimension d. Cxd[.,.] can then
be expressed with the (optional) buffering mechanism as follows:

Cxd½xdaðtÞ;fDmin;Dmaxg�¼

xdaðt�1Þ if PxdaðtÞðtÞP maxð15;xdaðtÞÞ
xdaðt�1Þ if xdaðtÞ<Dmin

xdaðt�1Þ if xdaðtÞ>Dmax

xdaðtÞ else

8>>><
>>>:

9>>>=
>>>;

ð14Þ

In short, the clamping and buffering operator, Cxd[.,.], allows a
dimensional jump only if the target dimension is within dimen-
sional range and has space for a newcomer. Accordingly, the general
pseudo-code of the MD PSO method can be expressed as follows:
MD PSO (termination criteria: {IterNo,eC, . . .})

1. For "a 2 [1,S] do:

1.1. Randomize xda(1), vda(1)

1.2. Initialize x~dað0Þ ¼ xdað1Þ
1.3. For "d 2 {Dmin,Dmax} do:

1.3.1. Randomize xxd
að1Þ, xvd

að1Þ
1.3.2. Initialize xyd

að0Þ ¼ xxd
að1Þ

1.3.3. Initialize xŷdð0Þ ¼ xxd
að1Þ

1.4. End For.

2. End For.

3. For " t 2 [1, IterNo] do:

3.1. For "a 2 [1,S] do:

3.1.1. If (f xxxdaðtÞ
a ðtÞ > f xyxdaðtÞ

a ðt � 1Þ
� �� �

then do:

3.1.1.1. xyxdaðtÞ
a ðtÞ ¼ xxxdaðtÞ

a ðtÞ
3.1.1.2. Update x~daðtÞ according to (8)
3.1.2. Else xyxdaðtÞ
a ðtÞ ¼ xyxdaðtÞ

a ðt � 1Þ
3.1.3. End If

3.1.4. If (f xxxdaðtÞ
a ðtÞ

� �
> max f xŷxdaðtÞðt � 1Þ

	
; max

16p<a

�
f xxxdaðtÞ

p ðtÞ
� �� �

Þ then do:

3.1.4.1. gbest (xda(t)) = a

3.1.4.2. If f xxxdaðtÞ
a ðtÞ

� �
> f ðxŷdbestðt � 1ÞÞ

� �
then

dbest = xda(t)

3.1.5. End If

3.1.6. Do updates in other dimensions according to (7)

3.2. End For.

3.3. If the termination criteria are met, then Stop.

3.4. For "a 2 [1,S] do:

3.4.1. For " j 2 [1,xda(t)] do:

3.4.1.1. Compute vxxdaðtÞ
a;j ðt þ 1Þ and xxxdaðtÞ

a;j ðt þ 1Þ
using (9)

3.4.1.2. Update velocities and locations in other

dimensions using (11)
3.4.2. End For.

3.4.3. Compute vda(t + 1) and xda(t + 1) using (12)

3.5 End For.
4. End For.

ith Applications 38 (2011) 2212–2223 2219
Once the MD PSO process terminates, the optimum solution
will be xŷdbest in the optimum dimension, dbest, achieved by the

particle with the index gbest (dbest) and finally the best (fitness)
score achieved will naturally be f ðxŷdbestÞ. Note that MD PSO is only
a natural extension or a generic form of the basic PSO, as it
searches for both optimum dimension and solution (in the opti-
mum dimension). Note that this is not a ‘superiority’ in terms of
convergence, rather the ability of searching the optimum solution
space dimension while searching for the positional optimum, in a
simultaneous way. In other words, the basic PSO is a MD PSO pro-
cess in a fixed dimension, which basically means that bPSO is iden-
tical to MD PSO for a particular (fixed) dimension. However,
contrary to bPSO, due to its ability to simultaneously search for
both optimum dimension and solution, MD PSO can conveniently
be used in many applications where the optimum dimension is un-
known. For instance in Kiranyaz et al. (2010) MD PSO (with FGBF)
has been used to find the true number of clusters in a complex data
space. This is obviously a tremendous advantage since with a tra-
ditional approach such as K-means, the number of clusters, K, has
to be given a priori and this may not be possible for many complex
problems. In another work (Ince et al., 2009), MD PSO has been
used for the automatic design of Artificial Neural Networks (ANNs)
by evolving to the optimal network configuration(s) for a particular
problem. Thus MD PSO can seek for the positional optimum in the
error space and dimensional optimum in the architecture space.
The optimum dimension converged at the end of a MD PSO process
corresponds to the best ANN configuration (or the most appropri-
ate ANN for that problem) where the trained network parameters
(connections, weights and biases) can then be resolved from the
positional optimum reached in that dimension. This presents a sig-
nificant advantage over many traditional training methods such as
the well-known back-propagation algorithm, which can only be
used to train a single ANN with a fixed configuration.

3.4. The proposed techniques over multi-dimensional MPB

For testing the proposed multi-dimensional optimization tech-
nique, we extended Branke’s MPB into a multi-dimensional version,
in which there exists many search space dimensions within a dimen-
sional range [Dmin,Dmax], and the optimal dimension changes over
time in addition to the dynamic nature of the conventional MPB. Peak
locations in different dimensions share the common peak center
coordinates and thus such an extension further allows exploitation
of the information gathered in other search space dimensions.

The multi-dimensional extension of the MPB is simple. The ini-
tialization and changes of peak locations must now be done in the
highest possible search space dimension, Dmax. Locations in the
other dimensions can be obtained simply by leaving out the redun-
dant coordinates (non-existing dimensions). The optimal dimen-
sion is chosen randomly every time the environment is changed.
Therefore, the fitness function with m peaks in multi-dimensional
environment can be expressed as,

Fð~xd; tÞ ¼max Bð~xdÞ; max
p¼1...m

P ~xd;d;hpðtÞ;wpðtÞ;~cd
pðtÞ

� �� �
ð15Þ

where d 2 [Dmin,Dmax] is the dimension of position ~xd and ~cd
pðtÞ re-

fers to the first d coordinates (dimensions) of the peak center loca-
tion. A cone peak is now expressed as follows:

Pð~xd;hpðtÞ;wpðtÞ;~cpdðtÞÞ¼hpðtÞ� spðtÞ � ~xd�~cd
pðtÞ

=d�ðDopt�dÞ2 where

spðtÞ ¼
hpðtÞ
wpðtÞ

and ~xd�~cd
pðtÞ

¼

ffiXd

i¼1

xd
i �cd

pi

� �2

vuut 8xd
i 2~xd; 8cd

pi 2~cd
pðtÞ

ð16Þ

S. Kiranyaz et al. / Expert Systems w
where Dopt is the current optimal dimension. If compared with
expression (5), now for all non-optimal dimensions a penalty term
(Dopt � d)2 is subtracted from the whole environment. In addition to
that the peak slopes are scaled by the term 1/d. The purpose of this
scaling is to prevent the benchmark from favoring the lower dimen-
sions. Otherwise a solution, whose every coordinate differs from the
optimum by 1.0 would be a lot better solution in a lower dimension
as the Euclidian distance is used.

Similar to the uni-dimensional (PSO) case, each positional com-
ponent xxd

aðtÞ of MD PSO particle represents a potential solution in
dimension d. The only difference is that now the dimensionality of
the optimal solution is not known beforehand, but it can vary with-
in the defined range. Even a single particle can provide potential
solutions in different dimensions as it makes inter-dimensional
passes as a result of MD PSO process. Our dynamic multi-dimen-
sional optimization algorithm combines multi-swarms and FGBF
with MD PSO. As in the different dimensions the common coordi-
nates of the peak locations are the same, it does not seem purpose-
ful for two swarms to converge to the same peak in different
dimensions. Therefore, the mutual repulsion between swarms is
extended to affect swarms that are in different dimensions. Obvi-
ously, only the common coordinates are considered when the
swarm distance is computed.

FGBF naturally exploits information gathered in other dimen-
sions. When the aGB particle is created, FGBF algorithm is not lim-
ited to use dimensional components from only those particles
which are in a certain dimension, but it can combine dimensional
coordinates of particles in different dimensions. Note that as we
still use the dimensional fitness score, f(a, j) = �(xj � cpj)2, the com-
mon coordinates of the positional components of the aGB particle
created in different search space dimensions, d 2 [Dmin,Dmax], shall
be the same. In other words, it is not necessary to create the posi-
tional components of the aGB particle from scratch in every search
space dimension d 2 [Dmin,Dmax], instead in dimensions higher
than Dmin, only one (new) coordinate (dimension) to the aGB par-
ticle is created and added. Note also that it is still possible that
in some search space dimensions aGB beats the native gbest parti-
cle, while in other dimensions it does not. In the multi-dimensional
version also the dimension and dimensional velocity of each parti-
cle are re-initialized after an environmental change in addition to
the particle velocities in each dimension.
4. Experimental results

An extensive set of experiments was conducted over both con-
ventional (uni-dimensional) MPB and the extended (multi-dimen-
sional) MPB and the results will be presented in the following sub-
sections.
4.1. Results on conventional MPB

We conducted an exhaustive set of experiments over the MPB
Scenario 2 using the settings given in Section 2.2. In order to inves-
tigate the effect of multi-swarm settings, we used different num-
bers of swarms and numbers of particles in a swarm. We applied
both FGBF modes using the current peaks and the swarm peaks.
To investigate how FGBF and multi-swarms individually contribute
to the results, we also made experiments without using either of
them.

Fig. 3 presents the current error plot, which shows the differ-
ence between the global maximum and the current best result dur-
ing the first 80,000 function evaluations, when 10 swarms each
with four particles are used and the swarm peak mode is applied
for the FGBF operation. It can be seen from the figure that as the
environment changes after every 5000 evaluations, it causes the

0 1 2 3 4 5 6 7 8

x 104

0

5

10

15

20

25

30

Number of evaluations

C
ur

re
nt

 e
rro

r

Fig. 3. Current error at the beginning of a run.

2 3 4 5 6 7 8

x 104

0

1

2

3

4

5

6

7

8

9

10

Number of evaluations

C
ur

re
nt

 e
rro

r

without FGBF
with FGBF

Fig. 5. Effect of FGBF on results.

2220 S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223
results to temporarily deteriorate. However, it is clear that after
environment changes the results are better than at the very begin-
ning, which shows the benefit of tracking the peaks instead of ran-
domizing the swarm when a change occurs. The figure also reveals
other typical features of the algorithms behavior. First of all, after
the first few environment changes the algorithm has not yet been
behaving as well as later. This is because the swarms have not yet
converged to a peak. Generally, it is more difficult to initially con-
verge to a narrow or low peak than to keep tracking a peak that be-
comes narrow and/or low. It can also be seen that typically the
algorithm gets close to the optimal solution before the environ-
ment is changed again. In few cases, where the optimal solution
is not found, the algorithm has for some reason been unable to
keep a swarm tracking that peak, which is too narrow.

In Figs. 4 and 5 the contributions of multi-swarms with FGBF
are demonstrated. The algorithm is run on MPB applying the same
environment changes, first with both using multi-swarms and
FGBF, then without multi-swarms and finally without FGBF. The
same settings are used as before. Without multi-swarms the num-
ber of particles is set to 40 to keep the total number of particles
unchanged.
2 3 4 5 6 7 8

x 104

0

5

10

15

20

25

30

35

40

Number of evaluations

C
ur

re
nt

 e
rro

r

without multi-swarms
with multi-swarms

Fig. 4. Effect of multi-swarms on results.
As expected, the results without multi-swarms are significantly
deteriorated due to the aforementioned reasoning. When the envi-
ronment is changed, the highest point of the peak to which the
swarm is converging can be found quickly, but that can provide
good results only when that peak happens to be the global opti-
mum. When multi-swarms are used, but without using the FGBF,
it is clear that the algorithm can still establish some kind of fol-
low-up of peaks as the results immediately after environment
changes are only slightly worse than with FGBF. However, if FGBF
is not used, the algorithm can seldom find the global optimum.
Either there is no swarm converging to the highest peak or the
peak center just cannot be found fast enough.

For comparative evaluations, we selected five of the state-of-
the-art methods, which use the same benchmark system, the
MPB with the same settings. The best MPB results published so
far by these competing methods are listed in Table 1.

The overall best results have been achieved by the Extremal
Optimization algorithm (Moser & Hendtlass, 2007); however, this
algorithm is specially and only designed for MPB and its applicabil-
ity for other practical dynamic problems is not clear. The best re-
sults by a PSO-based algorithm have been achieved by Blackwell
and Branke’s multi-swarm algorithm described in Section 2.3.

The numerical results of the proposed technique in terms of the
offline error are listed in Table 2. Each result given is the average of
50 runs, where each run consists of 500,000 function evaluations.
As expected the best results are achieved when 10 swarms are
used. Four particles in a swarm turned out to be the best setting.
Between the two FGBF modes, better results are obtained when
the swarm peak is used instead of the peak closest to each particle.

4.2. Results on multi-dimensional MPB

On the extended MPB we conducted experiments with settings
similar to those used in the fixed dimension except that the change
Table 1
Best results on MPB up to date.

Source Base algorithm Offline error

Blackwell and Branke (2004a) PSO 2.16 ± 0.06
Li et al. (2006) PSO 1.93 ± 0.06
Mendes and Mohais (2005) Differential evolution 1.75 ± 0.03
Blackwell and Branke (2004b) PSO 1.75 ± 0.06
Moser and Hendtlass (2007) Extremal optimization 0.66 ± 0.02

0 0.5 1 1.5 2 2.5

x 105

0

2

4

6

8

10

12

14

Number of evaluations

C
ur

re
nt

 e
rro

r

Fig. 7. Current error at the beginning of a MD PSO run.

0 0.5 1 1.5 2 2.5

x 105

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h

sp
ac

e
di

m
en

si
on

optimal dimension
current best dimension

Fig. 6. Optimum dimension tracking in a MD PSO run.

0 0.5 1 1.5 2 2.5

x 105

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h

sp
ac

e
di

m
en

si
on

optimal dimension
current best dimension

Fig. 8. Optimum dimension tracking without multi-swarms in a MD PSO run.

Table 2
Offline error using Scenario 2.

No. of swarms No. of particles Swarm peak Current peak

10 2 1.81 ± 0.50 2.58 ± 0.55
10 3 1.22 ± 0.43 1.64 ± 0.53
10 4 1.03 ± 0.35 1.37 ± 0.50
10 5 1.19 ± 0.32 1.52 ± 0.44
10 6 1.27 ± 0.41 1.59 ± 0.57
10 8 1.31 ± 0.43 1.61 ± 0.45
10 10 1.40 ± 0.39 1.70 ± 0.55

8 4 1.50 ± 0.41 1.78 ± 0.57
9 4 1.31 ± 0.54 1.66 ± 0.54

11 4 1.09 ± 0.35 1.41 ± 0.42
12 4 1.11 ± 0.30 1.46 ± 0.43

S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223 2221
frequency used is set to 15,000. The search space dimension range
used is d 2 [5,15]. Fig. 6 shows how the global optimal dimension
changes over time and how MD PSO is tracking these changes. Cur-
rent best dimension represents the dimension, where the best
solution is achieved among all swarms’ dbest dimensions. Ten mul-
ti-swarms are used with seven particles in each. FGBF is used with
the swarm peak mode. It can be seen that the algorithm always
finds the optimal dimension, even though the difference in peak
heights between the optimal dimension and its neighbor dimen-
sions is quite insignificant (=1) compared to the peak heights
(30–70). Fig. 7 shows how the current error behaves during the
first 250,000 evaluations, when the same settings are used. It can
be seen that the algorithm behavior is similar to the uni-dimen-
sional case, but now the initial converging phase, when the algo-
rithm is not yet behaving at its best is longer. Similarly it takes a
longer time to regain the optimal behavior if follow-up of some
peaks is lost for some reason (it is, for example, possible that high-
er peaks hide other lower peaks under them).

Figs. 8 and 9 illustrate the effect of using multi-swarms on the
results. Without multi-swarms the number of particles is set to
70. Fig. 8 shows that a single swarm can also find the optimal
dimension easily; however, as in the uni-dimensional case, with-
out use of multi-swarms, the optimal peak can be found only if it
happens to be the peak to which the swarm is converging. This
can be seen in Fig. 9. During the initial converging phase of the
multi-swarm algorithm results with and without multi-swarms
are similar. This indicates that both algorithms initially converge
to the same peak (highest) and as a result of the first few environ-
mental changes some peaks that are not yet discovered by multi-
swarms become the highest.

Figs. 10 and 11 illustrate similarly the effect of FGBF on the re-
sults. In Fig. 10 it can be seen that without FGBF the algorithm has
severe problems in tracking the optimal dimension. In this case, it
loses the benefit of exploiting the natural diversity among the
dimensional components and also it is not able to exploit informa-
tion gathered in other dimensions. Therefore, even if some parti-
cles visit the optimal dimension, they cannot track the global
peak fast enough that they would hence surpass the best results
in other dimensions. Therefore, the algorithm gets trapped in some
sub-optimum dimension where it happens to find the best results
in an early phase. Such reasons also cause the current error to be
generally higher without FGBF, as can be seen in Fig. 11.

The numerical results in terms of offline error are given in Ta-
ble 3. Each result given is the average of 50 runs, where each run
consists of 500,000 function evaluations. As in the uni-modal case,
best results are achieved when the number of swarms is equal to
the number of peaks, which is 10. Interestingly when the swarm
peak mode is used the optimal number of particles becomes seven

0 0.5 1 1.5 2 2.5

x 105

0

5

10

15

20

25

Number of evaluations

C
ur

re
nt

 e
rro

r

without FGBF
with FGBF

Fig. 11. Effect of FGBF on the performance.

0 0.5 1 1.5 2 2.5

x 105

0

5

10

15

20

25

30

Number of evaluations

C
ur

re
nt

 e
rro

r

without multi-swarms
with multi-swarms

Fig. 9. Effect of multi-swarms on the performance.

Table 3
Offline error on extended MPB.

No. of swarms No. of particles Swarm peak Current peak

10 4 2.01 ± 0.98 3.29 ± 1.44
10 5 1.77 ± 0.83 3.41 ± 1.69
10 6 1.79 ± 0.98 3.64 ± 1.60
10 7 1.69 ± 0.75 3.71 ± 1.74
10 8 1.84 ± 0.97 4.21 ± 1.83
10 10 1.96 ± 0.94 4.20 ± 2.03

8 7 1.79 ± 0.91 3.72 ± 1.86
9 7 1.83 ± 0.84 4.30 ± 2.15

11 7 1.75 ± 0.91 3.52 ± 1.40
12 7 2.03 ± 0.97 4.01 ± 1.97

0 0.5 1 1.5 2 2.5

x 105

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h

sp
ac

e
di

m
en

si
on

optimal dimension
current best dimension

Fig. 10. Optimum dimension tracking without FGBF in a MD PSO run.

2222 S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223
while with the current peak mode it is still four. Note that these re-
sults cannot be directly compared with the results on the conven-
tional MPB since the objective function of the multi-dimensional
MPB is somewhat different.
5. Conclusions

In this paper, we presented two PSO techniques, namely, FGBF
with multi-swarms and MD PSO for an efficient and robust optimi-
zation over the dynamic systems. Both MD PSO and FGBF have
been successfully used in static optimization problems particularly
as a cure to common drawbacks of the family of PSO methods such
as a priori fixation of the search space dimension and pre-mature
convergence to local optima. MD PSO efficiently addresses the for-
mer drawback by defining a new particle structure and embedding
the ability of dimensional navigation into the core of the process. It
basically allows particles to make inter-dimensional ‘passes’ with a
dedicated PSO process whilst performing regular positional up-
dates in every dimension they visit. Although the ability of deter-
mining the optimum dimension where the global solution exists
is gained with MD PSO, its convergence performance is still limited
to the same level as bPSO, which suffers from the lack of diversity
among particles. This leads to a pre-mature convergence to local
optima especially when multi-modal problems are optimized in
high dimensions. Realizing that the main problem lies in fact at
the inability of using the available diversity among the dimen-
sional components of swarm particles, the FGBF technique adapted
in this paper addresses this problem by collecting the best compo-
nents and fractionally creating an aGB particle that has the poten-
tial to be a better ‘‘guide” than the swarm’s native gbest particle. On
MPB we do not expect to receive fractional scores with respect to
the global (highest) peak, but instead we use either the peak, on
which the particle is currently located (current peak) or the peak
to which the swarm is converging (swarm peak). Especially swarm
peak mode makes it possible to find and track the global highest
peak quite successfully in a dynamic environment.

In order to make comparative evaluations with the current
state-of-the-art, FGBF with multi-swarms is then applied over a
benchmark system, the MPB. The results over the conventional
MPB with common settings used (i.e. Scenario 2) clearly indicate
the superiority of the proposed technique over other PSO-based
methods. To make the benchmark more generic for real-world
applications where the optimum dimension can be unknown too,
MPB is extended to a multi-dimensional system in which there is
a certain amount of dependency among dimensions. Note that
without such dependency embedded, the benchmark would be
just a bunch of independent MPBs in different dimensions and thus
a distinct and independent optimization process would be suffi-
cient for each dimension. Recall that the convergence behavior of
both bPSO and MD PSO is the same since MD PSO is only an exten-
sion of PSO for the multi-dimensional search. The performance of

S. Kiranyaz et al. / Expert Systems with Applications 38 (2011) 2212–2223 2223
both methods degrades with the increasing modality and dimen-
sionality due to the reasons mentioned earlier. When performed
with FGBF and multi-swarms, MD PSO exhibits both global conver-
gence ability and an impressive speed gain so that their mutual
performance surpasses bPSO by several magnitudes. The experi-
ments conducted over the extended MPB approve that the pro-
posed MD PSO technique with multi-swarms and FGBF always
finds and tracks the optimum dimension where the global peak re-
sides. On both (conventional and extended) MPBs, the proposed
techniques generally find and track the global peak, yet they can
occasionally converge to a near-optimum peak, particularly if the
height difference happens to be insignificant.

Overall, the proposed techniques fundamentally upgrade the
particle structure and the swarm guidance, both of which accom-
plish substantial improvements in terms of speed and accuracy.
Both techniques are modular and independent from each other,
i.e. one can be performed without the other whilst other PSO meth-
ods/variants can also be performed conveniently with (either of)
them.

References

Abraham, A., Das, S., & Roy, S. (2007). Swarm intelligence algorithms for data
clustering. In Soft computing for knowledge discovery and data mining book, Part
IV (pp. 279–313).

Angeline, P. J. (1997). Tracking extrema in dynamic environments. In Proceedings of
the 6th conference on evolutionary programming (pp. 335–345). Springer-Verlag.

Bäck, T. (1998). On the behaviour of evolutionary algorithms in dynamic
environments. In Proceedings of the IEEE congress on evolutionary computation
(pp. 446–451).

Bäck, T., & Kursawe, F. (1995). Evolutionary algorithms for fuzzy logic: A brief
overview. Fuzzy logic and soft computing (pp. 3–10). Singapore: World Scientific.

Bäck, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for
parameter optimization. Evolution on Computers, 1, 1–23.

Blackwell, T. M. (2007). Particle swarm optimization in dynamic environments.
Evolutionary Computation in Dynamic and Uncertain Environments, Studies in
Computational Intelligence, 51, 29–49.

Blackwell, T. M., & Branke, J. (2004a). Multi-swarm optimization in dynamic
environments. Applications of evolutionary computation (Vol. 3005, pp. 489–
500). Springer.

Blackwell, T. M., & Branke, J. (2004b). Multi-swarms, exclusion, and anti-
convergence in dynamic environments. IEEE Transactions on Evolutionary
Computation, 10/4, 51–58.

Branke, J. (2008). Moving Peaks Benchmark. http://www.aifb.uni-karlsruhe.de/
�jbr/MovPeaks/, viewed 26/06/08.

Chen, X., & Li, Y. (2007). A modified PSO structure resulting in high exploration
ability with convergence guaranteed. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 37(5), 1271–1289.

Chen, Y.-P., Peng, W.-C., & Jian, M.-C. (2007). Particle swarm optimization with
recombination and dynamic linkage discovery. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 37(6), 1460–1470.

Christopher, K. M., & Seppi, K. D. (2004). The Kalman swarm. A new approach to
particle motion in swarm optimization. In Proceedings of the genetic and
evolutionary computation conference (pp. 140–150). GECCO.

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive
particle swarm optimization. In Proceedings of the IEEE congress on evolutionary
computation (Vol. 3, pp. 1951–1957).

Eberhart, R., & Shi, Y. (2001). Tracking and optimizing dynamic systems with
particle swarms. In Proceedings of computational evolution conference (CEC 2001)
(pp. 94–100). NJ, US.

Eberhart, R., Simpson, P., & Dobbins, R. (1996). Computational intelligence. PC tools.
Boston, MA, USA: Academic Press, Inc..

Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. John
Wiley & Sons.

Esquivel, S. C., & Coello, C. A. (2003). On the use of particle swarm optimization with
multimodal functions. IEEE Transactions on Evolutionary Computation, 2,
1130–1136.

Fayyad, U. M., Shapire, G. P., Smyth, P., & Uthurusamy, R. (1996). Advances in
knowledge discovery and data mining. Cambridge, MA: MIT Press.

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning.
Reading, MA: Addison-Wesley.

Higashi, H., & Iba, H. (2003). Particle swarm optimization with gaussian mutation.
In Proceedings of the IEEE swarm intelligence symposium (pp. 72–79).

Ince, T., Kiranyaz, S., & Gabbouj, M. (2009). A generic and robust system for
automated patient-specific classification of electrocardiogram signals. IEEE
Transactions on Biomedical Engineering, 56(5), 1415–1426.

Janson, S., & Middendorf, M. (2005). A hierarchical particle swarm optimizer and its
adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
35(6), 1272–1282.
Kaewkamnerdpong, B., & Bentley, P. J. (2005). Perceptive particle swarm
optimization: An investigation. In Proceedings of the IEEE swarm intelligence
symposium (pp. 169–176). California.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the
IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). Perth,
Australia.

Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M. (2010). Fractional particle swarm
optimization in multi-dimensional search space. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 40(2), 298–319.

Koza, J. (1992). Genetic programming: On the programming of computers by means of
natural selection. Cambridge, Massachussetts: MIT Press.

Krohling, R. A., & Coelho, L. S. (2006). Coevolutionary particle swarm optimization
using gaussian distribution for solving constrained optimization problems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 36(6), 1407–1416.

Liang, J. J., & Qin, A. K. (2006). Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. IEEE Transactions On Evolutionary
Computation, 10(3), 281–295.

Li, X., Branke, J., & Blackwell, T. (2006). Particle swarm with speciation and
adaptation in a dynamic environment. In Proceedings of genetic and evolutionary
computation conference (pp. 51–58). Seattle Washington.

Lovberg, M. (2002). Improving particle swarm optimization by hybridization of
stochastic search heuristics and self-organized criticality, MSc thesis. Department
of Computer Science, University of Aarhus, Denmark.

Lovberg, M., & Krink, T. (2002). Extending particle swarm optimisers with self-
organized criticality. Proceedings of the IEEE Congress on Evolutionary
Computation, 2, 1588–1593.

Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm:
Simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3),
204–210.

Mendes, R., & Mohais, A. (2005). DynDE: A differential evolution for dynamic
optimization problems. IEEE congress on evolutionary computation, 2808–2815.

Moser, I., & Hendtlass, T. (2007). A simple and efficient multi-component algorithm
for solving dynamic function optimisation problems. IEEE Congress on
Evolutionary Computation, 252–259.

Omran, M. G., Salman, A., & Engelbrecht, A. P. (2006). Particle swarm optimization for
pattern recognition and image processing. Berlin: Springer.

Peng, B., Reynolds, R. G., & Brewster, J. (2003). Cultural swarms. Proceedings of the
IEEE Congress on Evolutionary Computation, 3, 1965–1971.

Peram, T., Veeramachaneni, K., & Mohan, C. K. (2003). Fitness-distance-ratio based
particle swarm optimization. In Proceedings of the IEEE Swarm Intelligence
Symposium (pp. 174–181). IEEE Press.

Ratnaweera, A. C., Halgamuge, S. K., & Watson, H. C. (2002). Particle swarm
optimiser with time varying acceleration coefficients. In Proceedings of the
international conference on soft computing and intelligent systems (pp. 240–255).

Ratnaweera, A. C., Halgamuge, S. K., & Watson, H. C. (2003). Particle swarm
optimization with self-adaptive acceleration coefficients. In Proceedings of the
first international conference on fuzzy systems and knowledge discovery (pp. 264–
268).

Richards, M., & Ventura, D. (2003). Dynamic sociometry in particle swarm
optimization. In Proceedings of the sixth international conference on
computational intelligence and natural computing (pp. 1557–1560). North
Carolina.

Riget, J., & Vesterstrom, J. S. (2002). A diversity-guided particle swarm optimizer – the
ARPSO, Technical report. Department of Computer Science, University of Aarhus.

Shi, Y., & Eberhart, R. C. (1998). A modified particle swarm optimizer. In Proceedings
of the IEEE congress on evolutionary computation (pp. 69–73).

Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization.
Proceedings of the IEEE congress on evolutionary computation (Vol. 1,
pp. 101–106). IEEE Press.

Suganthan, P. N. (1999). Particle swarm optimiser with neighborhood operator. In
Proceedings of the IEEE congress on evolutionary computation (pp. 1958–1962).
IEEE Press.

Van den Bergh, F. (2002). An analysis of particle swarm optimizers, PhD thesis.
Department of Computer Science, University of Pretoria, Pretoria, South Africa.

Van den Bergh, F., & Engelbrecht, A. P. (2002). A new locally convergent particle
swarm optimizer. Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, 96–101.

Van den Bergh, F., & Engelbrecht, A. P. (2004). A cooperative approach to particle
swarm optimization. IEEE Transactions on Evolutionary Computation, 3, 225–239.

Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, MA: Belknap Press.
Xie, X., Zhang, W., Yang, Z. (2002). Adaptive particle swarm optimization on

individual level. In Proceedings of the sixth international conference on signal
processing (Vol. 2, pp. 1215–1218).

Xie, X., Zhang, W., & Yang, Z. (2002a). A dissipative particle swarm optimization.
Proceedings of the IEEE Congress on Evolutionary Computation, 2, 1456–1461.

Xie, X., Zhang, W., & Yang, Z. (2002c). Hybrid particle swarm optimizer with mass
extinction. Proceedings of the International Conference on Communication, Circuits
and Systems, 2, 1170–1173.

Yasuda, K., Ide, A., & Iwasaki, N. (2003). Adaptive particle swarm optimization.
Proceedings of the IEEE international conference on Systems, Man, and Cybernetics,
2, 1554–1559.

Zhang, W.-J., & Xie, X.-F. (2003). DEPSO: Hybrid particle swarm with differential
evolution operator. Proceedings of the IEEE International Conference on System,
Man, and Cybernetics, 4, 3816–3821.

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

	Multi-dimensional particle swarm optimization in dynamic environments
	Introduction
	Related work
	The basic PSO algorithm
	Moving Peaks Benchmark
	Multi-swarm PSO

	The proposed optimization technique for dynamic environments
	FGBF technique
	FGBF application for MPB
	MD PSO algorithm
	The proposed techniques over multi-dimensional MPB

	Experimental results
	Results on conventional MPB
	Results on multi-dimensional MPB

	Conclusions
	References

