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 

Abstract— In this paper, the performance of the phase space 

representation in interpreting the underlying dynamics of 

epileptic seizures is investigated and a novel patient-specific 

seizure detection approach is proposed based on the dynamics of 

EEG signals. To accomplish this, the trajectories of seizure and 

non-seizure segments are reconstructed in a high dimensional 

space using time-delay embedding method. Afterwards, Principal 

Component Analysis (PCA) was used in order to reduce the 

dimension of the reconstructed phase spaces. The geometry of the 

trajectories in the lower dimensions is then characterized using 

Poincaré section and seven features were extracted from the 

obtained intersection sequence. Once the features are formed, 

they are fed into a two-layer classification scheme, comprising the 

Linear Discriminant Analysis (LDA) and naïve Bayesian 

classifiers. The performance of the proposed method is then 

evaluated over the CHB-MIT benchmark database and the 

proposed approach achieved an 88.27% sensitivity and 93.21% 

specificity on average with 25% training data. Finally, we 

perform comparative performance evaluations against the state-

of-the-art methods in this domain which demonstrate the 

superiority of the proposed method.  

 
Index Terms— Dynamics, EEG, phase Space, Poincaré section, 

seizure detection, two-layer classifier topology. 

 

I. INTRODUCTION 

PILEPTIC seizures are transient excessive neuronal 

discharges originated from cortical gray matter and 

considered as the main definition of epilepsy. Indeed the 

concept of epilepsy covers a wide range of disorders, which 

can be classified according to the variety in types of seizures. 
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Therefore, the epileptologist in the first place, should diagnose 

if an epileptic seizure occurred and then determine the seizure 

type. For this purpose, electroencephalography (EEG) is 

commonly used due to its unique properties, such as cost-

effectiveness and high temporal resolution, which make it an 

influential and compulsory tool for exploring the brain 

functioning of patients with epilepsy. 

The estimated number of people suffering from epilepsy in 

the world is around 50 million [1]. In addition, an increasing 

need for recording EEG signals in the long term, and the 

contamination of these signals with physiological and non-

physiological artefacts renders their interpretation through 

visual inspection only a daunting and challenging task. These 

factors add impetus to the need of an automatic seizure 

detection system to ease the neurologist’s burden of inspecting 

such long-term EEG data [2]. Thus, in the recent years, several 

techniques have been developed in order to detect patterns of 

interest from background patterns, including time [3], 

frequency [4], time-frequency [5], and nonlinear methods [6] - 

[8]. 

Despite conventional time series analysis, nonlinear 

dynamics addresses nonlinear relationships among the 

variables of a system by investigating only the variables (i.e., 

states) in phase space whilst discarding time or spectral 

components. The main power of this approach is that it 

provides information regarding the underlying dynamics of the 

system without knowing all the factors in the system 

evolution. Hence, nonlinear time series analysis, unlike 

differential equations, is a top-down approach where 

information about the states of the system or the relationship 

among the states is not available. Therefore, the approach is to 

reconstruct the system dynamics in phase space and then 

quantify the reconstructed attractors (e.g., [9] and [10]). 

Numerous measures originated from nonlinear dynamics 

have been introduced and used for the analysis of EEG 

signals. Correlation dimension [11], Lyapunov exponents [12], 

phase synchronization [13], and mutual dimension [14] can be 

named among the traditional and novel measures. 

Nevertheless, most of these measures do not have 

straightforward interpretations and can only be used as 

tentative indices. This may instigate a false impression of 

chaos, hence surrogate data tests are needed in order to check 

the validity of the analysis. In other words, surrogate data 
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analysis is required in this case to reject the least null 

hypotheses of linear stochastic and white noise [15] [16]. On 

the contrary, phase space reconstruction can be considered as 

a tool to demonstrate the evolution of a dynamic system 

through time, while the dynamic system can fall into several 

categories such as conservative or dissipative, linear or 

nonlinear, deterministic or stochastic. Therefore, using 

geometrical features, based only on the phase space and 

without asserting any assumption about the type of the 

underlying dynamic, made the studies independent from 

chaotic hypothesis and consequently independent from the 

surrogate data analysis [6].  

However, despite the emphasized properties of the phase 

space, characterizing the reconstructed trajectories of EEG 

signals, purely based on its geometry, is quite rare and only 

few works exist up to date. In [17], the phase space of an EEG 

signal was reconstructed after decomposing the signal using 

empirical mode decomposition with application to seizure 

detection. Two measures, namely the 95% confidence ellipse 

area and the interquartile range of the Euclidian distance, were 

extracted from two- and three-dimensional phase spaces, 

respectively. M. Chang et al. compared the efficiency of 

features obtained by amplitude-frequency analysis [18] and 

autoregressive (AR) model [10] using phase space and raw 

data in a Brain Computer Interface (BCI) task. In their study, 

the phase space of two EEG channels was reconstructed and 

then the AR parameters, peak and mean values of the absolute 

value of amplitude samples in two frequency bands 8-13 Hz 

and 14-25 Hz were calculated as features. It was shown that 

these features improve the classification results in contrast to 

the same features extracted from the raw data. 

In [19], the wavelet (Daubechies 4) coefficients of an EEG 

signal at 5 levels were used to plot a two dimensional phase 

space. Then, the Euclidean distances between the origin and 

every point in the phase space were calculated. The mean, 

median, average power and standard deviation of these 

distances in each sub-band were used as features in order to 

detect seizure events. The classification results on real EEG 

data showed the significance of the extracted features. 

Furthermore, the phase space of EEG signals has been studied 

in a behavioral neuroscience research. In [20], the slope of a 

regression line in a two-dimensional phase space was obtained 

as a function of different time lags and considered as a feature 

in classification of sleep-wake states. The results showed the 

features based on phase space achieved higher performance 

than the power spectral approach. 

Accurate reconstruction of the phase space has a great 

impact on the characterization of its trajectory properties. In 

the time-delay embedding method this accuracy depends on 

the proper selection of the time lag and the embedding 

dimension. According to the embedding theorem, any time lag 

will be acceptable; however, it should be noted that choosing a 

too small or a too large time lag value prompts completely 

dependent and independent coordinates [6]. Thus, the 

necessary and major task in keeping the physical properties of 

attractors is to determine a large enough embedding 

dimension. In the aforementioned studies, the maximum 

embedding dimension of three (in [17]), or two (in [18], [10], 

[19], and [20]) were used, this is generally insufficient and 

hence inadequate for mathematical modeling of such complex 

signals. Many published works in EEG signal processing (e.g., 

[21] - [24]) propose high dimensional phase spaces, i.e., d>3. 

However, using a higher dimensional phase space makes the 

interpretation and visualization of the trajectories a 

challenging task. 

In this study, in order to address the aforementioned 

deficiencies such as the false impression of chaos and the 

necessity of applying surrogate data analysis, a novel phase 

space method is proposed. The proposed method aims to 

capture the underlying dynamics of the epileptic seizures and 

hence to discriminate them from the non-seizure segments in 

an efficient way. Therefore, our primary goal is to create a 

new set of nonlinear features for seizure detection which 

decreases the computational complexity while at the same 

time increases the seizure detection accuracy. This method 

describes the characterization of the geometry of a high 

dimensional phase space in such a way that it keeps the 

reconstructed trajectories unfolded. More specifically, this 

paper describes a novel feature extraction method based on a 

high dimensional phase space along with a classification 

scheme, where the main objective is to maximize the seizure 

detection accuracy with a minimal feedback from a human 

expert. Besides the discrimination ability of the extracted 

features, there are two main factors potentially affecting the 

performance of the automatic seizure detection methods: 

variation in seizure types and the brain regions where seizures 

have originated. Epileptic seizures develop as the results of 

different disorders, and as such, they cause significant 

variations of seizure types among patients (inter-patient 

variability). Therefore, in this work patient-specific setting is 

employed as a convenient candidate for such classification 

problems since this approach has more potential to learn the 

patterns of seizures in each individual specifically. In order to 

address the second factor, the signals of all channels are 

utilized. Besides providing the information of seizures in 

different brain areas, this approach gives the flexibility on the 

proposed framework to be compatible with various EEG 

recording montages. 

To accomplish these objectives, first we reconstruct the 

trajectories of each 1-second EEG segment with fixed values 

of time lag and embedding dimension (Section  II.B). Then, a 

Poincaré map of the reconstructed trajectories is obtained 

using Poincaré section, which is mainly chosen according to 

the first and second Principal Components (PCs) of the phase 

space coordinates (Section  II.C). Afterwards, 7 discriminative 

features (Section  II.D) are extracted from the obtained 

Poincaré map and fed into a classifier topology with two-layer 

architecture. The first layer consists of 23 Linear Discriminant 

Analysis (LDA) classifiers and a Naïve Bayes classifier 

formed in the second layer (Section  II.E) in order to fuse the 

decisions of the first layer classifiers and hence perform the 

final classification. Finally, the proposed approach is tested on 

a benchmark dataset with EEG recordings of pediatric patients 

with intractable seizure and compared with the state-of-the-art 
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methods in this domain. The paper is concluded in Section  IV. 

II. EEG DATA PROCESSING 

A. EEG Dataset 

The EEG recordings were collected from 23 pediatric 

patients (males, ages 3-22; and females, ages 1.5-19) at the 

Children’s Hospital, Boston, to assess their candidacy for 

surgical operation [25] [26]. Nine to twenty four EEG 

recordings were recorded for each individual. All the 

recordings were labeled as seizure or non-seizure with one 

second resolution. The sampling frequency was 256 Hz with 

16-bit resolution. There are 23 common channels (FP1-F7, F7-

T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, 

F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, 

CZ-PZ, P7-T7, T7-FT9, FT9-FT10, FT10-T8, and T8-P8) for 

each recording, which are based on the international 10-20 

system of EEG electrode positions (see Fig. 1). In this study, 

only those records which contain at least one seizure event 

were used. In TABLE I, the lengths of each EEG recording 

(used in this study) are shown. Recordings 21 and 1 were 

obtained from the same female patient with 1.5 year apart, 

which were considered as two extra patients in this study. In 

addition, patient 15 was excluded from our analysis because 

we failed to read the EEG data of this patient. 

 
Fig. 1. Location of electrodes in international 10-20 system; the used channels 

are shown with gray color. 

B. Phase Space Reconstruction 

The phase space of a system represents how the states’ 

dynamics evolve over time. The aim of phase space 

reconstruction is to obtain state vectors using the sequence of 

observed measurements. In this study, time-delay embedding 

method [27] is used for reconstruction of the EEG phase 

space. Takens' theorem expresses that the topological features 

of any higher dimensional system with coupled variables are 

reconstructable from a single time series of observations [28]. 

This theorem proves the independence of our study from the 

surrogate data analysis, which is mentioned in Section  I. 

The main idea is to create a series of time-shifted samples in 

d dimensions so that d coordinates would be provided using 

the map: 

    X[𝑛] → 𝑌[𝑛] = (𝑋[𝑛], 𝑋[𝑛 + 𝑇], … , 𝑋[𝑛 + (𝑑 − 1)𝑇])    (1) 

where T is the time lag. In order to determine the convenient 

dimension and time lag the two commonly known methods of 

correlation dimension and the mutual information are 

employed [6]. The embedding dimension 5 and time lag 6 

(about 23 milliseconds at a sampling frequency of 256 Hz) 

were achieved and used for constructing an EEG attractor. The 

achieved values were validated empirically, where different 

time lags and embedding dimensions were used and their 

classification accuracy compared. In Fig. 2, the reconstructed 

phase spaces of sample seizure and non-seizure segments from 

the 1
st
, 17

th
 and 21

st
 patients are shown. 

 
Fig. 2. The phase space plots of 1-s non-seizure segments in the left column 

(a, c, and e), and seizure segments in the right column (b, d, and f) 

reconstructed from the 1st, 17th and 21st patients (each row) in the CHB-MIT 
benchmark database. 3-D phase spaces are plotted for visualization. 

C. Poincaré Section Delineation  

Poincaré section, which was named in Henry Poincaré 

honor, is a well-known method for analyzing the type of 

attractors. In this method, a line (or plane) cut the attractor and 

then the intersection points are investigated. In fact, Poincaré 

section provides a geometric view of a trajectory’s behavior 

through those intersection points. One application of Poincaré 

section, for instance, is to study the stability of limit cycles. 

This method also can be considered as a sampling method, 

which converts the continuous trajectories of a phase space to 

a discrete sequence of intersection points. The investigation of  
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how the trajectories pass through the Poincaré section reveals 

information about the dynamics of a system that is not 

obtainable otherwise [29]. 

The most common approach in this context is applying the 

Poincaré section on two- or three-dimensional attractors. The 

reason is that Poincaré section aims to generate a plot 

stroboscopically so that it samples the motion of the observed 

trajectories. In order to construct such a view, the Poincaré 

section must have a dimension less than the corresponding 

trajectories. Therefore, for instance, if the embedding 

dimension of a phase space is three, then a plane is used as a 

Poincaré section. In our case, where the number of embedding 

dimension is five, the Poincaré section will be a surface with 

four dimensions. In order to avoid using such complex 

geometric shapes and at the same time keep the trajectories 

unfolded without ambiguities, the following solution is 

proposed: first, Principal Component Analysis (PCA) is 

employed in order to convert the 5-dimensional embedding 

coordinates into a set of values of linearly uncorrelated 

principle components (PCs). Then, a polynomial with the 

degree of one (i.e., Poincaré section) is fitted to the space 

formed by the 1
st
 and 2

nd
 PCs. The intersection points of the 

fitted line and trajectories in the 2-dimensional space are then 

obtained. In Fig. 3, the whole process of Poincaré mapping is 

shown. The reason for deploying PCA is to project the entire 

phase space onto a different space (the space originated from 

1
st
 and 2

nd
 PCs) where the reconstructed trajectories are more 

spread. In this way, the chosen space contains more 

information about the dynamics of the states. It is worth 

mentioning that the first 2 PCs are just linear transformations 

of the original variables and do not necessarily contain more 

information than the other PCs. Therefore, we empirically 

checked all the possible combinations of PCs i.e., 1
st
 and 3

rd
 

PCs, 2
nd

 and 3
rd

 PCs, etc., and the best results was achieved by 

the first and seconds PCs for feature extraction. In order to 

find the intersection points, the trajectories and the Poincaré 

section lines were considered as polylines and then the Bézier 

clipping method [30] was applied. 

D. Feature Extraction 

In the next step, seven features in total were extracted from 

the first PC of the intersection sequence obtained in 

Section  II.C. These features are as follows: 

Range:  

                         Range = max(X) − min(X),                        (2) 

Quantile and interquantile range: 

The 0.13 quantile and the interquartile range (the difference 

between the first -0.25- and the third -0.75- quartile). 

Shannon entropy: 

                        Hs(X) = − ∑ P(X)log2(P(X)),                      (3) 

Root Mean Squared Amplitude (RMS Amp): 

                    RMSAmp(X) = √
1

N
∑ X2(k)N

k=1 ,                      (4) 

Coefficient of Variation: 

                            COV(X) =
√

∑(X−X̅)

N

X̅
,                                  (5) 

and energy: 

                          En(X) = ∑ |X(k)|2N
k=1                              (6) 

 

where X is the sequence of the intersection points, and X̅ is its 

mean value. N is the number of intersection points and P(X) is 

the probability distribution function. 

E. Classification and Post Processing 

Once the feature vectors of each patient were formed, they 

are fed into a two-layer classifier network. In the first layer, a  

TABLE I.  CHB-MIT benchmark. The patients with longest and shortest duration of recordings are shown in bold. 

Patient Gender Age 
Number of seizure events (Tmax-

Tmin in seconds) 
 

Total duration of 

seizures (sec) 

Total duration of non-

seizures (sec) 

Total duration 

(sec) 

1 F 11 7 (28-102) 449 23476 23925 

2 M 11 3 (10-83) 175 7984 8159 

3 F 14 7 (48-70) 409 24791 25200 

4 M 22 4 (50-117) 382 37977 38359 

5 F 7 5 (97-121) 563 17437 18000 

6 F 1.5 10 (13-21) 163 93053 93216 

7 F 14.5 3 (87-144) 328 32209 32537 

8 M 3.5 5 (135-265) 924 17076 18000 

9 F 10 4 (63-80) 280 34219 34499 

10 M 3 7 (36-90) 454 50010 50464 

11 F 12 3 (23-753) 809 9250 10059 

12 F 2 27 (14-98) 1016 33844 34860 

13 F 3 10 (18-71) 450 24750 25200 

14 F 9 8 (15-42) 177 25023 25200 

16 F 7 8 (7-15) 77 17923 18000 

17 F 12 3 (89-116) 296 10528 10824 

18 F 18 6 (31-69) 323 19951 20274 

19 F 19 3 (78-82) 239 10307 10546 

20 F 6 8 (30-50) 302 19734 20036 

21 F 13 4 (13-82) 203 13587 13790 

22 F 9 3 (59-75) 207 10593 10800 

23 F 6 7 (21-114) 431 31823 32254 

24 Unknown Unknown 16 (17-71) 539 42661 43200 
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single LDA classifier trained over the features of each 1-

second EEG segment of each EEG channel. Once the first 

layer classifiers are trained, then their outputs (class vectors) 

are fed into a naïve Bayes (NB) classifier as a feature matrix, 

which makes the final classification for the input 1-second 

EEG segment. In the naïve Bayes classifier the “multivariate 

multinomial distribution” is used to model the outputs of the 

LDA classifiers because the input features of the second layer 

are discrete (i.e., binary). The schematic diagram of the 

proposed classification framework is shown in Fig. 4. 

The main scenario is that once the system is trained for a 

specific patient it can then be used over and over for the same 

patient. In this case, after the system is trained using the 

labeled data, the system can be used and help the neurologist 

for the same patient over and over. Therefore, we divided the 

benchmark database is divided into a training and test datasets, 

both of which contain seizure and non-seizure frames, where 

the training set contains seizure and non-seizure segments 

which occurred earlier in time and the remaining segments 

constitute the test set. The classifier network was trained over 

the EEG recording of each patient’s training set that is formed 

using two different training sizes: 25% and 50% of the 

available data.  

In the post processing step, the fuzzy rule-based 

morphological filter proposed in our previous work [31] was 

applied to the outputs of each classifier in both layers (i.e., 23 

LDA and 1 NB). The principal aim of the morphological filter 

is to filter out the classification outliers based on some global 

properties such as continuity and neighborhood similarity. 

III. EXPERIMENTAL RESULTS 

In this section, first the overall results of the proposed 

patient-specific approach are presented. For comparative 

 
Fig. 3. Poincaré mapping procedure. The phase space (column 2) is obtained from the raw signal (column 1) in a non-seizure (top row) and a seizure 
segment (bottom row). In order to draw the Poincaré section, a polynomial curve with degree of one is fitted to the 1st and 2nd PCs of the phase space 

coordinates (column 3). Once the intersection points were determined, their values on the first PC were used for feature extraction. For visualization 

purpose, only the first three coordinates of phase space are shown. 

 
Fig. 4. The proposed classification framework (PSR is the phase-space reconstruction, LDA and NB are the linear discriminant analysis and naïve Bayes 

classifier, respectively). 
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evaluations, in section  III.B, the seizure detection systems 

using the CHB-MIT benchmark are briefly presented. In 

section  III.C, the proposed feature extraction approach is 

compared against the three state-of-the-art methods. In 

section  III.D, four different classifiers within the proposed 

classification topology are evaluated against the proposed 

classifier. Finally, the computational complexity analysis is 

presented in section  0.  

A. Classification Performance Evaluations 

In this work, the standard performance measures of 

sensitivity (Sen), specificity (Spe) and accuracy (Acc) are 

used. They are defined as follows, 

                                     𝑆𝑒𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (7) 

                                   𝑆𝑝𝑒 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
,                                      (8) 

                                𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,                             (9) 

where 𝑇𝑃 (True Positive) is the number of segments correctly 

detected as seizure, 𝐹𝑁 (False Negative) is the number of 

segments incorrectly detected as non-seizure, 𝑇𝑁 (True 

Negative) is the number of segments correctly detected as 

non-seizure, and 𝐹𝑃 (False Positive) is the number of 

segments incorrectly detected as seizure. The confusion matrix 

and the overall classification performance measures are shown 

in TABLE II and TABLE III. In addition, the Region of 

Convergence (ROC) plots are presented in Fig. 5 and Fig. 6 

for better visualization of the performance of the proposed 

method. 

As TABLE III shows, the best classification performance is 

achieved using a training rate of 50% with an average 

sensitivity and specificity of 89.10% and 94.80%, 

respectively. However, even with 25% training rate only an 

insignificant performance loss is encountered, i.e., 88.27% and 

93.21% are the average sensitivity and specificity rate, 

respectively. This demonstrates a delicate generalization 

capability of the proposed approach and effectiveness of the 

proposed feature extraction on the discrimination of the 

seizures segments. 

However, the results given in TABLE III indicate that a 

relatively low classification accuracy is obtained on a few 

patients i.e., 6, 12 and 24. The reason is that in the recordings 

of these patients, there are many similarities between seizure 

and non-seizure segments as well as the high variations within 

each type. This is visible in Fig. 7 where few segments of non-

seizure and seizure recordings from patient 6 are displayed. As 

can be seen in the figure, there is a high variability between 

patterns of non-seizure segments c, e and g. In addition, this 

difference is evident between seizure segments d and h. 

Furthermore, both segments in a and b have high frequency 

and low amplitude signals while the former is a non-seizure 

and the latter is a seizure segment. 

Furthermore we calculated the Average Detection 

Sensitivity Rate (ADSR), Average False Alarm (AFA) per 

hour and Average Alarm Delay (AAD) as expressed below in 

order to evaluate the “seizure event detection” performance of 

the proposed method. In order to calculate these metrics, we 

defined a seizure event if at least 7 consecutive seizure 

segments (with resolution of 1 second) are detected. 

 

ADSR =
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑖𝑧𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑁𝑆

𝑆 =1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 "𝑆" 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑖𝑧𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
,  (10) 

 

 

 

TABLE II. True Positive (TP), False Negative (FN), True Negative (TN), and False Positive (FP) achieved for test set using 50% and 25% training rate. 

50% Training rate  25% Training rate 

patients 

Seizure 

detected as 

seizure (TP) 

Seizure 

detected as 

non-seizure 

(FN) 

Non-seizure 

detected as 

non-seizure 

(TN) 

Non-seizure 

detected as 

seizure (FP) 

Seizure 

detected as 

seizure (TP) 

Seizure 

detected as 

non-seizure 

(FN) 

Non-seizure 

detected as 

non-seizure 

(TN) 

Non-seizure 

detected as 

seizure (FP) 

1 206 18 11693 45 327 9 17371 236 

2 80 7 3955 37 131 0 5645 343 

3 203 1 12087 308 306 0 17084 1509 

4 169 22 18409 579 276 10 23663 4819 

5 219 62 8677 41 350 72 13011 66 

6 58 23 41672 4854 99 23 47232 22557 

7 124 40 16069 35 211 35 23988 168 

8 373 89 8522 16 574 119 12404 403 

9 133 7 17084 25 206 4 24844 820 

10 212 15 24750 255 293 47 37129 378 

11 383 21 4521 104 597 9 6556 381 

12 407 101 11344 5578 560 202 20491 4892 

13 219 6 11751 624 325 12 17455 1107 

14 83 5 11814 697 129 3 17258 1509 

16 33 5 6681 2280 42 15 11859 1583 

17 148 0 4862 402 191 31 7618 278 

18 161 0 8460 1515 242 0 11953 3010 

19 101 18 5048 105 135 44 7647 83 

20 142 9 9790 77 213 13 14525 275 

21 101 0 6727 66 151 1 10040 150 

22 102 1 5278 18 151 4 7836 108 

23 183 32 15757 154 193 130 23716 151 

24 179 90 21142 188 272 132 31195 800 
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TABLE III. The classification results using the proposed method. Patients with measures less than 70% are highlighted. Sen, Spe, and Acc are the 

sensitivity, specificity and accuracy obtained over the test data. 

 50% Training (%) 25% Training (%) 

Patient Sen. Spe. Acc. Sen. Spe. Acc. 

1 91.96 99.62 99.47 97.32 98.66 98.63 

2 91.95 99.07 98.92 100 94.27 94.39 

3 99.51 97.52 97.55 100 91.88 92.02 

4 88.48 96.95 96.87 96.50 83.08 83.21 

5 77.94 99.53 98.86 82.94 99.50 98.98 

6 71.60 89.57 89.54 81.15 67.68 67.70 

7 75.61 99.78 99.54 85.77 99.30 99.17 

8 80.74 99.81 98.83 82.83 96.85 96.13 

9 95.00 99.85 99.81 98.10 96.80 96.82 

10 93.39 98.98 98.93 86.18 98.99 98.88 

11 94.80 97.75 97.51 98.51 94.51 94.83 

12 80.12 67.04 67.42 73.49 80.73 80.52 

13 97.33 94.96 95.00 96.44 94.04 94.08 

14 94.32 94.43 94.43 97.73 91.96 92.00 

16 86.84 74.56 74.61 73.68 88.22 88.16 

17 100 92.36 92.57 86.04 96.48 96.19 

18 100 84.81 85.05 100 79.88 80.20 

19 84.87 97.96 97.67 75.42 98.93 98.39 

20 94.04 99.22 99.14 94.25 98.14 98.08 

21 100 99.03 99.04 99.34 98.53 98.54 

22 99.03 99.66 99.65 97.42 98.64 98.62 

23 85.12 99.03 98.85 59.75 99.37 98.84 

24 66.54 99.12 98.71 67.33 97.50 97.12 

Average 89.10 94.80 94.69 88.27 93.21 93.11 

 

 

 

 
Fig. 5. ROC plots for 50% training rate per patient. The x- and y axis represent the false positive rate and true positive rate, respectively. 
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AFA per hour =

 
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 "𝑆"𝑁𝑆

𝑆=1

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝐸𝐺 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 (𝑖𝑛 ℎ𝑜𝑢𝑟𝑠) 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
,          (11) 

 

AAD =  
∑ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑠 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 "𝑆"𝑁𝑆

𝑆=1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑖𝑧𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
,  (12) 

 
where NS = 23 is the total number of patients. The ADSR, 

AFA, and AAD metrics are reported for the test set in TABLE 

IV. 

 

As can be seen in TABLE IV, the best results have been 

achieved using 50% training rate as expected. Because of the 

existence of noise and artifacts in the EEG records of the 

patients 6 and 12, the average of false alarms increased 

significantly. To be more specific, using 50% training rate and 

not taking into account patients 6 and 12, we achieved 

97.14%, 1.85, and 5.63 for ADSR, AFA and AAD, 

respectively. However, the delay is increased by about 1 

second on average while the number of false alarms per hour 

is approximately reduced by half. Similarly, with 25% training 

rate, 94.93%, 2.75 and 5.65 were obtained for ADSR, AFA 

and AAD, respectively.  

B. Comparative Evaluations of the Classification 

Performance 

Few recent studies have used this benchmark for evaluation. 

There are three main reasons for this: 1) high seizure 

variations both within- and among patients, 2) only bipolar 

longitudinal montage information provided (lack of full 

montage information), and 3) long-term EEG recordings in 

this dataset contain other patterns such as sleep and 

physiological artefacts which reduce the performance of 

seizure detection (in particular in patients 6 and 12). 

In TABLE V, we summarized the seizure detection methods 

(i.e., methods which detect the entire duration of seizure 

events and not only the onset of seizure) applied on CHB-MIT 

dataset. In order to perform a fair comparative evaluation we 

compared our approach only with those studies which used a 

training rate higher than or equal to ours and also used 

complete data from the benchmark database for evaluation. 

Note that no comparisons can be drawn between our results 

and the ones from [32], [33] and [34], since the patients used 

in these studies were not specified. In [35], only accuracy is 

reported which is not a proper metric for such highly 

unbalanced dataset. Still in the proposed approach with only 

25% training rate we achieved around 13% higher accuracy 

level than the method in [35] although they used 80% training 

rate.  

 
Fig. 6. ROC plots for 25% training rate per patient. The x- and y axis represent the false positive rate and true positive rate, respectively. 
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SUB 2
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SUB 1

SUB 7

SUB 12

SUB 18
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TABLE IV. Average Detection Sensitivity Rate (ADSR), Average False 

Alarm (AFA) and Average Alarm Delay (AAD) achieved on test set for 

seizure event detection 

Using 50% training 

rate  

 Using 25% training 

rate  

ADSR (%) 96.29 91.34 

AFA per 

hour 
3.04 4.86 

AAD  

(second) 
4.65 5.03 
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Direct comparison with [36] is not feasible either because 

there is an ambiguity in how the training and test sets are 

constructed. Regardless of this ambiguity, the best achieved 

detection sensitivity rate of 83% was reported in the fifth 

experiment which corresponds to the 80% training rate. 

Regardless, we still achieve a significantly higher sensitivity 

rate with only 25% training rate. 

Additionally, in this work an average sensitivity and 

specificity rate of 89.31% and 95.03% were achieved using 

only the early 25% of each EEG record as training (excluding 

the patients 6 and 12), which further shows approximately 1% 

improvement in contrast to our previous work [31] with the 

same training rate but using a large set of features in a 

significantly sophisticated classifier network topology. 

Therefore, our previous method needs a cloud computing 

implementation with massive parallelization for any on-line  

processing because we used a large network of classifiers in 

each Network of Binary Classifier (NBC) [37]. While in the 

proposed method, only 24 and significantly faster classifiers 

(23 LDAs and 1 Naïve Bayes) are used. In addition, the 

proposed method needs only about 3 ms for feature extraction 

from a 1-s EEG segment while in our previous method it took 

280 ms. As a result, the proposed method can easily be ported 

on a tablet or pocket size computer which makes the proposed 

EEG classification approach feasible on a mobile application. 

C. Comparative Evaluations of the Feature Extraction 

Approach 

In order to perform a fair comparison between the 

discriminative powers of the proposed feature extraction 

technique against the other state-of-the-art methods, three 

different feature sets are extracted from the CHB-MIT 

benchmark and classified using the same classification scheme 

explained in section  II.E. The first feature set consists of six 

features used in [38], which are the energy of details and 

approximation coefficients (d1, d2, d3, d4, d5, and a5). The 

second feature set was proposed by Kumar et al. [39], where 

approximate entropy (ApEn) of details and approximation 

coefficients (d1-d5, and a1-a5) were proposed for epileptic 

seizure detection. In these two feature sets, wavelet 

Daubechies 4 were used in order to decompose the EEG 

segments into five levels. The third feature set is a 

combination of eight nonlinear features, including ApEn [40], 

correlation dimension [41], and recurrence quantification 

analysis (RQA). The RQA based features are recurrence rate, 

determinism, averaged diagonal line length, entropy, 

laminarity, and trapping time [28]. TABLE VI presents the 

obtained results against the three competitor feature sets over 

the test data. 

The results clearly indicate that the proposed feature 

extraction approach yields the highest average sensitivity and 

specificity rates. Based on TABLE VI, the proposed features 

obtained relatively low results for only two patients, i.e., less 

than 70% in either sensitivity or specificity while the 

competing feature sets totally fail in some patients; for 

instance, the first, second and third feature sets obtained less 

than 50% specificity for patients 4, 13, and 18. This makes 

them entirely unreliable in practice for a medical diagnosis 

application using the proposed classification scheme. 

D. Comparative Evaluations of the Classifiers 

To evaluate the selection of the classifiers used in the first 

layer of the proposed approach (i.e., LDA), the performances 

of different classifiers are also presented while the NB 

classifier in the second layer is used. In TABLE VII, we 

compared the sensitivity and specificity of 4 state-of-the-art 

classifiers including Quadratic Discriminant Analysis (QDA), 

Mahalanobis Discriminant Analysis (MDA), Naïve Bayes 

(NB), and SVM (with a linear kernel). The NB classifier used 

in the first layer employed kernel smoothing density 

estimation in order to model the input features. It is clear that 

the proposed LDA classifiers can reach much higher 

sensitivity compared to QDA and NB classifiers. In addition, 

they can achieve approximately 2% higher average sensitivity 

and specificity compared to MDA classifier. Even though 

SVM classifier with linear kernel achieved 1% higher 

sensitivity than LDA, it fails to classify the EEG data of 

patients 4 and 6. Moreover, LDA achieved 0.4% higher 

specificity on average, which is a noteworthy improvement in 

such unbalanced data, i.e., recall that the average duration of 

non-seizure segments over 23 patients is around 26444 

seconds, 0.4% of which are about 106 seconds. So on average, 

using SVM would lead to an extra of 106 false alarms. 

Furthermore, the computational complexity of the SVM 

classifier is much higher than that of LDA, which may cause 

problems in practice for real-time processing. This is further 

investigated in detail in the next sub-section. 

 
Fig. 7. The non-seizure (first column) and seizure (second column) 

segments of patient 6 illustrate a high variability within the same class 

and similarity between distinct classes (length of each segment=10 
seconds, channels: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, and F3-C3). 
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TABLE V. The proposed seizure detection methods using CHB-MIT dataset 

Authors Features Patients Channels 
Training 
Rate (%) 

Av. 

Sen. 

(%) 

Av. 

Spe. 

(%) 

Av. 

Acc. 

(%) 

Rafiuddin et. 
al. [35] 

Interquartile range, median absolute deviation of raw 

data, energy and coefficient of variation extracted from 

the  Daubiches (db4) wavelet coefficients 

23 23 80 - - 80.16 

Uzzaman 
Khan et. al. 

[32] 

Relative values of 
normalized coefficient of variation (NCOV) 

based measure 

5 (not 

specified) 

Not 

specified 
80 83.6 100 91.8 

Hunyadi 
et. al. [36] 

16 features extracted from time and 
frequency domain 

23 
Not 

specified 
≈ 80 83 - - 

Supratak 

et. al. [33] 

Uses stacked autoencoders as unsupervised 

feature learner 

6 (randomly 

selected) 

Not 

specified- 
channels 

were 

selected 
manually 

Totally 30 
epochs 

used 

 

100 - - 

Fürbass 

et al. [34] 
EpiScan (automatic seizure detection method) 23 - - 67 - - 

Kiranyaz 

et. al. [31] 

342 features including time, frequency, and time- 

frequency features 

21(excluding 
 patients 6, 

12, and 15) 

18 25 89.01 94.71 - 

Proposed 

Method 

7 features extracted from intersection points of 

Poincaré section and phase space 

23 
(excluding 

patient 15) 

23 

25 88.27 93.21 93.11 

50 89.10 94.80 94.69 

 
 

TABLE VI. The classification results of three different feature sets using the proposed classification scheme. Performance metrics less than 70% are 

highlighted. 

Length of One EEG Segment = 1 second, Training Rate = 50% 

 
Proposed feature set 

1st Feature Set 

Energy of DWT Coeff. [38] 

2nd Feature Set 

DWT-based ApEn. [39] 

3rd Feature Set 

Nonlinear [40] [41] [28] 

Patient Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. 

1 91.96 99.62 94.64 98.11 94.64 99.48 93.75 90.45 

2 91.95 99.07 98.85 16.51 96.55 36.62 78.16 95.57 

3 99.51 97.52 96.08 97.01 95.59 97.52 94.61 97.04 

4 88.48 96.95 24.61 26.01 21.99 34.78 67.02 83.96 

5 77.94 99.53 79.36 98.65 78.29 99.60 98.93 85.66 

6 71.60 89.57 65.43 67.99 64.20 73.44 64.20 70.28 

7 75.61 99.78 73.17 99.79 69.51 99.96 50.00 93.45 

8 80.74 99.81 74.89 99.23 74.46 99.40 77.71 96.78 

9 95.00 99.85 82.14 100 87.14 100 68.57 66.46 

10 93.39 98.98 84.58 99.86 83.26 99.64 94.27 91.89 

11 94.80 97.75 95.30 97.69 94.31 94.14 99.01 74.68 

12 80.12 67.04 76.97 79.66 87.80 87.24 77.76 65.88 

13 97.33 94.96 100 28.75 98.22 32.21 99.11 42.97 

14 94.32 94.43 64.77 98.63 76.14 98.63 85.23 99.22 

16 86.84 74.56 81.58 91.75 84.21 97.51 97.37 76.97 

17 100 92.36 92.57 93.43 97.30 93.79 91.22 74.58 

18 100 84.81 97.52 78.42 96.27 82.52 100 43.19 

19 84.87 97.96 84.87 95.85 85.71 99.28 77.31 91.97 

20 94.04 99.22 92.05 97.67 94.04 97.14 94.04 95.46 

21 100 99.03 90.10 98.45 90.10 98.45 90.10 84.31 

22 99.03 99.66 96.12 99.30 97.09 98.51 83.50 91.77 

23 85.12 99.03 93.02 99.39 88.84 99.08 90.23 92.76 

24 66.54 99.12 65.80 97.05 63.94 99.99 76.95 93.84 

Average 89.10 94.80 82.80 85.18 83.46 87.78 84.74 82.57 
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E. Computational Complexity Analysis 

In this work, we implemented the proposed method using 

MATLAB version R2014b and the computations were 

performed on a standard desktop computer with a 3.4 GHz 

processor and 16 GB ram. Two metrics are used for evaluating 

the computational complexity: The first metric is the time 

taken to extract each feature set from every 1-s long segment 

of one EEG channel. This value was repeatedly calculated 

across one hour (3600 segments) to ensure the repeatability of 

the measured time and is reported in TABLE VIII for the 

proposed and competing feature extraction methods. 

 

The second metric is the elapsed times for classification 

(including training and test) over the proposed features for one 

hour recording with different classifiers, which are shown in 

TABLE IX. The results clearly demonstrate the superiority of 

the proposed approach with LDA classifiers over the proposed 

features in terms of computational complexity. 

Clearly, the proposed method has the advantages of having 

relatively high sensitivity and specificity, and low 

computational complexity. The proposed method on the other 

hand lacks preprocessing steps for removing noise and 

artifacts. Although, this decreases the computational 

complexity, it can increase the false alarms due to the 

contaminated EEG signals especially in patients 6 and 12. 

Additionally, the proposed method is not able to detect the 

pre-ictal states. 

IV. CONCLUSIONS 

In this study, a new multi-channel EEG seizure detection 

method is presented based on the dynamics of the trajectories 

in phase space. The proposed Poincaré mapping procedure 

enables us to study the difference between the dynamics of the 

seizure and non-seizure segments in a high dimensional phase 

space. The proposed approach keeps the reconstructed 

TABLE VII. The classification results of the proposed features using four different classifiers. Patients with performance metrics of less than 70% are 

highlighted. 

Length of One EEG Segment = 1 second, Training Rate = 50% 

 
LDA QDA MDA NB SVM 

Patient Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. 

1 91.96 99.62 95.98 99.45 100 91.00 95.87 98.93 95.98 99.80 

2 91.95 99.07 98.85 13.45 90.80 99.97 93.98 98.76 97.70 98.95 

3 99.51 97.52 99.51 95.35 100 97.05 100 96.51 99.51 97.10 

4 88.48 96.95 23.04 40.85 18.32 97.70 11.11 97.52 32.46 96.00 

5 77.94 99.53 86.83 93.90 100 67.80 96.59 93.62 99.64 94.23 

6 71.60 89.57 58.02 29.72 18.75 98.10 16.05 77.51 55.56 91.24 

7 75.61 99.78 82.32 96.35 91.46 94.98 87.90 96.41 89.02 97.44 

8 80.74 99.81 88.74 99.33 93.51 97.21 83.63 99.30 89.83 99.06 

9 95.00 99.85 97.14 96.05 97.14 95.69 97.84 76.14 96.43 97.21 

10 93.39 98.98 96.92 96.70 96.04 94.55 95.96 98.20 95.59 99.08 

11 94.80 97.75 96.53 95.35 97.03 87.87 96.47 98.67 96.04 99.11 

12 80.12 67.04 59.76 84.85 86.22 68.38 53.66 77.17 87.40 74.74 

13 97.33 94.96 56.89 94.56 96.41 95.31 72.85 97.50 96.44 95.01 

14 94.32 94.43 88.64 91.99 88.64 96.92 91.67 95.38 94.32 95.72 

16 86.84 74.56 84.21 41.95 76.32 97.07 63.64 79.22 92.11 72.05 

17 100 92.36 100 92.00 100 87.08 100 92.97 100 90.81 

18 100 84.81 100 77.30 100 75.26 100 85.81 100 82.09 

19 84.87 97.96 88.14 93.13 97.48 87.70 82.18 94.83 95.80 96.35 

20 94.04 99.22 90.73 99.04 93.38 96.73 87.50 99.13 94.04 98.62 

21 100 99.03 85.15 99.85 86.14 99.87 87.75 99.63 100 99.44 

22 99.03 99.66 100 97.90 100 96.85 100 98.33 100 98.92 

23 85.12 99.03 97.67 99.13 98.60 97.94 98.07 99.06 98.14 99.06 

24 66.54 99.12 72.12 98.48 80.67 95.49 68.83 99.53 66.54 99.50 

Average 89.10 94.80 84.66 83.77 87.26 92.02 81.81 93.48 90.11 94.41 

 

TABLE VIII. Run time (in millisecond) using three different feature 

extraction methods in the proposed classification scheme 

 

Proposed 

Feature Set  

1st 

Feature 

Set 

2nd 

Feature 

Set 

3rd 

Feature 

Set 

Average elapsed time for 

feature extraction of 1s-

long EEG segment 

2.6 2.8 5.3 146.2 

 

TABLE IX. Classification run times (in seconds) using four different 
classifiers over the proposed features 

 

LDA 

(Proposed) 

QDA MDA NB SVM 

Average elapsed time 

for classification of 

1h EEG recording  

0.25 0.27 0.26 58.29 24.28 
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trajectories unfolded and the computational complexity low. 

The proposed seizure detection approach was performed 

over CHB-MIT database in order to achieve the 

aforementioned objectives. The results indicate an improved 

classification performance over competing techniques without 

any pre-processing. The proposed approach achieves the 

highest accuracy and minimum false alarm rate among the 

three state-of-the-art feature extraction methods and four 

different classifiers, and offers the best trade-off between the 

anomaly detection accuracy and computational burden. 

Furthermore, the achieved run time shows the potential 

application of the proposed approach in Epilepsy Monitoring 

Units (EMUs). 

Extracting better features directly from the phase space 

rather than from its principal components is the subject of our 

future study. To accomplish this, noise and artifacts in EEG 

signals will need to be significantly suppressed prior to 

subsequent analysis. 
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