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a b s t r a c t

This paper presents a genetic algorithm model for the cost optimization of composite beams based on the
load and resistance factor design (LRFD) specifications of the AISC. The model formulation includes the
cost of concrete, steel beam, and shear studs. Two design examples taken from the literature were ana-
lyzed in order to validate the proposed model, to illustrate its use, and to demonstrate its capabilities in
optimizing composite beam designs. The results obtained show that the model is capable of achieving
substantial cost savings. Hence, it can be of practical value to structural designers. A parametric study
was also conducted to investigate the effects of beam spans and loadings on the cost optimization of com-
posite beams.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Because of its economy, composite floor construction is widely
used in commercial multistory buildings. To create a composite
floor, a concrete slab is often mechanically connected to a hot-
rolled steel section through shear connectors.

In practice, a composite beam is designed in a trial-and-error
process to select the following parameters: (1) the concrete type
expressed by its compressive strength and its unit weight, (2) the
slab thickness, (3) the steel section size expressed by its cross-sec-
tional area, and its steel grade expressed by its yield strength, and
(4) the strength of the shear connectors expressed by its shear
resistance, and the number of shear connectors provided.

The design of composite beams is complicated and highly iter-
ative. Depending on the design parameters, a beam may be fully or
partially composite. In the case of the LRFD design code [3], the
plastic deformation has to be considered. A source of complexity
is due to the fact that the location of the plastic neutral axis
(PNA) may lie within the concrete slab, the flange of the steel
beam, or the web of the steel beam. Since the value of a design
parameter affects other values, all design parameters cannot be
found simultaneously.

Mathematical optimizations provide methodologies to auto-
mate the complicated design process [1]. Moreover, one can
achieve an optimum solution out of numerous solutions on the ba-
sis of a selected criterion such as the minimum weight or the min-
ll rights reserved.
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imum cost. The majority of the articles that have been published
on the optimization of structural systems focused on the minimum
weight design. Only a small fraction of these articles has dealt with
the minimum total cost. Sarma and Adeli [17,18] published a re-
view of the articles dealing with the cost optimization of concrete
and steel structures, respectively. Jármai and Farkas [6] discussed
the cost calculation and the optimization of welded steel
structures.

Few journal articles on the optimization of composite beams
have also been published. Zahn [19] discussed the economies of
the LRFD design code versus the AISC allowable stress design code
in the design of composite beams through the weight comparison
of some 2500 composite designs using A36 steel. The results indi-
cated that the LRFD design code yielded a saving of 6–15% for
span lengths ranging from 3 m to 13.7 m. Lorenz [15] discussed
the minimum cost design of composite beams based on the
AISC–LRFD design code and argued that the real advantage of
the AISC–LRFD concept could be realized in the minimum cost de-
sign. Bhatti [4] attempted to build upon the idea by casting the
problem into a standard optimization formulation and solving
the problem approximately using the symbolic algebra Mathemat-
ica [16]. His cost function, however, only includes the cost of the
steel beams and the field-installed shear studs, neglecting the cost
of concrete. Long et al. [14] presented a non-linear programming
based optimization of cable-stayed bridges with composite super-
structures and proposed a cost objective function which contained
the costs of concrete, structural steel, reinforcement, cables and
formwork. Kravanja and Šilih [10] introduced a non-linear pro-
gramming optimization models for composite I beams. Kravanja
and Šilih [11] also introduced a mixed-integer non-linear pro-
gramming approach for cost optimization of composite I beams.
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Adeli and Kim [2] proposed a formulation for the cost optimiza-
tion of composite beams based on the AISC LRFD specifications
by including the costs of (a) concrete, (b) steel beam, and (c) shear
studs. The problem is formulated as a mixed integer-discrete non-
linear programming problem and solved by the recently patented
neural dynamics model of Adeli and Park. In addition, Kravanja
and Šilih [12] performed an optimization based comparison be-
tween composite welded I beams and composite hollow-section
trusses for a defined steel price of €/0.4 kg and for fixed econom-
ical parameters. In their work, the cost objective function includes
the costs of concrete, steel sections, reinforcement, shear studs,
anti-corrosion paint, fire protection paint, sheet-steel cutting
costs, and welding costs as well as the formwork costs. This objec-
tive function was also used by Klanšek and Kravanja [7] for the
comparison of different composite systems for a pre-defined im-
posed load and a fixed steel price. Kravanja et al. [13] presented
a mixed-integer non-linear programming (MINLP) optimization
approach to mechanical superstructures. Klanšek and Kravanja
[8,9] presented the cost optimization, comparison, and competi-
tiveness between three different composite floor systems: com-
posite beams produced from duo-symmetrical welded I sections,
composite trusses formed from rolled channel sections and com-
posite trusses made from cold formed hollow sections. The opti-
mization was performed by the non-linear programming
approach, NLP. The aim of the comparison was to define the spans
and the loads, at which each of the presented composite struc-
tures showed its advantages. Comparative diagrams, displayed
at the end of the paper, can be usefully applied for choosing the
optimal type of a structure.

This paper presents the development of a genetic algorithm
model for the cost optimization of composite beams. Genetic algo-
rithm-based models are efficient techniques for the cost optimiza-
tion of composite beams because they can generate practical and
minimum cost design solutions. The formulation includes the cost
of concrete, steel beam, and shear studs. The model is capable of
generating optimal/near-optimal design solutions that satisfy the
constraints of the AISC–LRFD specifications [3]. Two examples
taken from the literature are used to illustrate the use of the pro-
posed method, to demonstrate its capabilities in cost optimization
of composite beams, and to validate its results. A parametric study
was also conducted to investigate the effects of beam spans and
loadings on the cost optimization of composite beams.
2. Model formulation

The primary purpose of this development stage is to formulate a
robust optimization model that supports the cost minimization of
composite beams. To this end, the present model is formulated in
two major steps: (1) To determine the major decision variables
affecting the design of composite beams; and (2) to formulate
the objective of cost optimization of composite beams in a robust
optimization model.

2.1. Decision variables

The present model is designed to consider all relevant decision
variables that may have an impact on the cost optimization of
composite beams. These include for the concrete slab: (1) the com-
pressive strength (f0c), (2) the unit weight (Yc), and (3) the thickness
(tc); for the steel section: (1) the yield strength (Fy), (2) the cross-
sectional area (As), (3) the depth (d), (4) the web thickness (tw),
(5) the flange thickness (tf), (6) the flange width (bf), (7) the mo-
ment of inertia (Is), and (8) the plastic modulus (Zs); and for the
shear connectors: (1) the diameter (ASC) and (2) the number (Ns)
of shear connectors.
In order to reduce the complexity of the optimization model,
the present model combines the decision variables related to the
steel section into a single variable called a steel section decision
variable.

The yield strength, Fy, of the steel section is given and fixed at
the onset of each design, and hence, the fourth decision variable
is not considered in the present model.

A design alternative option, which defines a complete design of
a composite beam, includes the following decision variables:

x1 = concrete compressive strength,
x2 = concrete slab thickness,
x3 = steel section shape,
x4 = shear connector diameter, and
x5 = number of shear connectors.

Table 1 lists a number of possible values for the five decision
variables.

2.2. Optimization objectives

The present optimization model is formulated in order to pro-
vide the capability of cost optimization of composite beams. The
model is also designed to quantify and measure the impact of var-
ious decision variables that affect the cost optimization of compos-
ite beams. It incorporates the following objective equation:

Minimize composite beam cost ¼ Ct ¼ Cc þ Cs þ Csd ð1Þ

where Cc, Cs, and Csd are the cost of concrete, steel beam, and shear
connectors, respectively. The terms used in the objective equation
are defined as follows:

Cc ¼ ccLbtcC 0c ð2Þ

Cs ¼ qAsLC0s ð3Þ

Csd ¼ NsC
0
sd ð4Þ

where L is the beam span, q is the unit weight of steel section, C0c is
the cost of concrete per unit weight, C0s is the cost of the steel sec-
tion per unit weight, and C 0sd is the cost of one shear connector
including installation and material costs.

The minimization of the objective function is subjected to the
constraints prescribed by the AISC–LRFD specifications [3]. These
constraints are described briefly in the following section.

2.3. Design constraints

2.3.1. Flexural strength constraints
The ultimate bending moment must be less than or equal to the

nominal flexural strength multiplied by the resistance factor (/
= 0.9). Two cases must be considered. First, the moment capacity
of the non-composite steel section (excluding the concrete
strength) must be checked to make sure that the steel section
can support its own weight, the weight of the wet concrete, and
the temporary loads such as construction loads. This constraint is
expressed as

Mu-noncomposite 6 0:90Mn-noncomposite ð5Þ

where Mu-noncomposite is the ultimate factored moment due to the wet
concrete weight, the temporary loads, and the own weight of the
steel section, and Mn-noncomposite is the nominal moment capacity
of the steel section.

Second, the moment capacity of the composite section must be
checked to make sure that the composite section can support all
dead and live loads, as defined by the following constraint:



Table 1
Design variable range values.

Gene values Concrete strength
f 0c (MPa)

Concrete slab
thickness tc (mm)

Steel section
shape

Shear stud diameter
STD (mm)

Number of shear
studs NS

0 20 100 W200 � 15 13 10
1 25 110 W200 � 19.3 16 12
2 30 120 W200 � 22.5 19 14
3 35 130 W200 � 26.6 22 16
4 40 140 W200 � 31.3 20
5 150 W200 � 35.9 22
6 160 W200 � 41.7 24
7 170 W250 � 17.9 26
8 180 W250 � 22.3 28
9 190 W250 � 25.3 30

10 200 W250 � 28.4 32
11 W250 � 32.7 34
12 W250 � 38.5 36
13 W310 � 21 38
14 W310 � 23.8 40
15 W310 � 28.3 42
16 W310 � 32.7 44
17 W310 � 38.7 46
18 W310 � 44.5 48
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Mu composite 6 0:85Mn composite ð6Þ

where Mu_composite is the factored moment due to dead and live
loads, and Mn_composite is the moment capacity of the composite
beam.

Using the notation of Fig. 1, the moment capacity of the com-
posite beam when the plastic neutral axis (PNA) lies within the
beam flange is given by:

Mn�composite ¼ Ccon x1 þ x2 þ tc �
a
2

� �
þ Cflange x2 þ

x1

2

� �
ð7Þ

where a is the depth of the concrete equivalent rectangular stress
block, which is given by

a ¼ Ccon

0:85f 0cbeff
ð8Þ

Since the concrete compression capacity of a partially compos-
ite beam is governed by the resistance of the shear connectors, the
concrete compression resistance, Ccon, is substituted by the resis-
tance of the shear connectors between the points of the maximum
and the zero moments. Thus, Eq. (8) may be re-written as

a ¼
P

Q n

0:85f 0cbeff
¼

Q nðNs
2 Þ

0:85f 0cbeff
ð9Þ

The distance between the bottom of the concrete slab and the
PNA, d1, is found by equating the tension force to the compression
forces as follows:
PNA 
d

tw

tf

bf

beff

tc

d1

T

d2

0.85 f'c

Ccon

Cflange

a 

Fy

Fig. 1. Plastic design of composite beam when PNA lies in steel flange.
d1 ¼
AsFy �

P
Q n

2bf Fy
ð10Þ

From geometry,

d2 ¼
Asðd2� d1Þ þ bf

d2
1

2

As � bf d1
ð11Þ

When the PNA lies within the beam web as shown in Fig. 2, the
moment capacity of the composite beam is given by

Mn composite ¼ Ccon d1 þ d2 þ tc �
a
2

� �
þ Cflange d1 þ d2 �

tf

2

� �

þ Cweb
d1 � tf

2
þ d2

� �
ð12Þ

Similarly, d1 and d2 are determined as follows:

d1 ¼ tf þ
AsFy �

P
Q n � 2Cflange

2Fytw
ð13Þ

d2 ¼
Asðd2� d1Þ þ bf tf ðd1 �

tf

2Þ þ ðd1 � tf Þ2ðtw
2 Þ

As � bf tf � twd1 þ tf tw
ð14Þ
2.3.2. Deflection constraint
The deflection of a composite beam depends on whether it is

shored or not during the construction phase. The unshored
construction is less labor-intensive and faster than the shored
construction, and hence, it is often the preferred method of
PNA 

d
tw

tf

bf

beff

tc

d1

T

d2

0.85 f'c

Ccon

Cflange

a 

Fy

CWeb

Fig. 2. Plastic design of composite beams when PNA lies in steel web.
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Fig. 3. Composite beam elastic design.

A.B. Senouci, M.S. Al-Ansari / Advances in Engineering Software 40 (2009) 1112–1118 1115
construction. For unshored composite beams, the deflection of the
composite beam due to live loads, DLL, is given by [3]:

DLL ¼
5wLLL4

384EsILB
6 C1L ð15Þ

where wLL is the service live load per unit length of the beam, Es is
the modulus of elasticity of the steel section, ILB is the lower bound
moment of inertia, and C1 is a coefficient ranging from 1

300 to 1
360 for

building structures or 1
500 to 1

900 for highway bridges.
The lower bound moment of inertia ILB, which is based on the

area of the beam and an equivalent concrete area of Qn/Fy

(Fig. 3), is given by the following equation [3]:

ILB ¼ Is þ As YENA �
d
2

� �
�

P
Q n

Fy

� �
ðdþ Y2 � YENAÞ ð16Þ

YENA represents the distance from the bottom of the steel beam
to the elastic neutral axis (ENA) and it is given by the following
equation:

YENA ¼
Asd
2 þ

P
Qn

Fy

� �
ðdþ Y2Þ

As þ
P

Qn

Fy

� � ð17Þ

Y2 is given by:

Y2 ¼ Ycon �
a
2

ð18Þ

where Ycon is the distance from the top of the steel beam to the top
of the concrete.

2.3.3. Shear stud spacing constraint
AISC–LRFD defines the minimum center-to-center spacing

of shear connectors, p, not to be less than six times the diameter,
/, of the shear connector, and the maximum center-to-center
spacing not to be greater than eight times the total slab thickness,
tc, i.e.

p P 6ð/Þ ð19Þ

p 6 8ðtcÞ ð20Þ
3. Model implementation

Genetic algorithms, which are used for the implementation of
the proposed model, are search and optimization tools that assist
decision makers in identifying optimal or near-optimal solutions
for problems with a large search space. They are inspired by the
mechanics of evolution. They adopt the survival of the fittest and
the structured exchange of the genetic materials among popula-
tions of chromosomes (bit-strings) over successive generations as
a basic mechanism for the search process [5]. The size of the initial
population should be between 30 and 500 chromosomes [5] and
could be manually prepared or randomly generated. Consecutive
generations evolve by applying the operators of reproduction,
crossover, and mutation on a population of chromosomes whose
patterns depend upon the problem under consideration. The chro-
mosome format could either be binary (or true-valued) and order-
ing coding. The chromosome size is determined by the model,
considering the total number of decision variables included in
the design problem. The number of generations (G) and the popu-
lation size (S) are identified based on the selected chromosome size
in order to improve the quality of the solution. The forms of repro-
duction, crossover, and mutation operators depend on the way the
problem is coded. A brief description of each of these operators is
given as follows:

Reproduction measures the fitness of individuals in a generation
and then reproduces some of the individuals in proportion to their
fitness values. The reproduction aim is to give good (individuals)
solutions a higher chance than the bad ones of passing their ‘‘gen-
es” to the next generation.

Crossover is an operation that allows chromosomes to swap
parts of bit-strings at randomly selected crossing point(s). The
crossover is done with a crossover rate, Pc, that represents the
probability that two strings will swap their bits. The crossover
operation creates variations in the solution population by produc-
ing new solution strings that consist of parts taken from selected
parent solution strings. Its value varies between 0.7 and 0.9. A va-
lue of 0.8 is commonly used.

Mutation is a random change of bits in a chromosome to re-
introduce lost bit values into a population. Without this mecha-
nism, a genetic algorithm system might unintentionally exclude
promising areas of searching space due to premature conver-
gence of certain genes in the whole population to a common
bit value. In a uniform mutation operation, a gene (real number)
is replaced with a randomly selected number within a specified
range. The mutation rate represents the probability that a bit
within a string will be flipped (0 becomes 1, 1 becomes 0). The
mutation operation introduces random changes in the solution
population. In genetic algorithms, the mutation operation can
be beneficial in reinforcing diversity in a population. The muta-
tion rate has usually a very low value for binary encoded genes,
say 0.005.

The computation procedure of the composite beam design is
shown in Fig. 4 as a flowchart while the steps are described as
follows:

(1) Read project and genetic algorithm parameters needed to
initialize the search process. The project parameters
include: (1) steel section modulus of elasticity, (2) steel sec-
tion yield strength, (3) concrete unit weight, (5) steel section
unit cost, (6) concrete unit cost, (7) shear connector unit
cost, (8) beam span, (9) beam spacing, and (10) section
properties for 77 commonly-used W-shape sections. The
required genetic algorithm parameters for this initialization
phase include: (1) a string size; (2) the number of genera-
tions; (3) a population size; (4) a mutation rate; and (5) a
crossover rate.

(2) Generate random solutions (s = 1 to S) for the initial popula-
tion P1 in the first generation (g = 1). These solutions repre-
sent an initial set of feasible design solutions that satisfy
all the constraints listed in the preceding section. This set
of solutions is then evolved in order to generate a set of opti-
mum/near optimum feasible design alternatives.



Start

Read project and genetic algorithm parameters 

Generate random solutions (s = 1 to S) for parent population P1 of first generation (g = 1) 

Solution (s=1)

Last solution S

Create a child population Cg using selection, crossover, & mutation operators 

Sort new combined population Ng based on fitness values 

Combine child population Cg and parent population Pg to form  a new combined 
population Ng of size 2S 

Keep top S solutions to form the next generation's parent population  Pg+1

Last generation gg = g + 1 

Yes

Yes

( s + 1)

End

No

No

Compute composite beam cost for solution s in generation g 

Check composite beam design for solution s in generation g  

Fig. 4. Computational flowchart of the proposed model.
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(3) Calculate the composite beam cost for each feasible design
alternative (s) in generation g in order to determine the fit-
ness of the solution.

(4) Create a child population Cg using selection, crossover, and
mutation operators.

(5) Combine the child population Cg and the parent population
Pg to form a new combined population Ng with a size of
2S. This combined population allows good solutions of the
initial parent population to pass on to the following genera-
tion in order to avoid the loss of good solutions of the initial
parent population once they are found.

(6) Sort the new combined population, Ng based on their fitness
values, which are the total costs.

(7) Keep the top S solutions from the combined population Ng to
form the parent population (Pg + 1) of the next generation.
This parent population is then returned to Step 3 for gener-
ating a new iterative process, which continues until the
specified number of generations is completed.

These computational steps were implemented using a C++ com-
puter program (see Fig. 4).
4. Illustrative examples

Two examples taken from the literature [3] were analyzed and
presented in order to illustrate the use of the proposed model, to
demonstrate its capabilities, and to validate its results. The
rates of crossover and mutation were set to 0.8 and 0.005, respec-
tively. After a number of trial-and-error adjustments, a population
size of 1500 individuals and 100 generations were found to meet
the accuracy requirements for the two examples. Table 2 summa-
rizes the input data needed for both examples. The cost values C0c ,
C0s, C0sd were selected to be $1.15kg�1$0.3kg�1, and $3.3stud�1,
respectively.

Three cases were considered. In the first case, the slab thickness
and the concrete compressive strength were kept constant. In the
second case, only the compressive strength was kept constant. In
the third case, all decision variables were allowed to vary.
Tables 3 and 4 summarize the results obtained in the examples.
The results show that the proposed model was able to achieve sig-
nificant cost savings in both examples as it is shown that the cost
savings in Examples 1 and 2 reach the values of 25.3% and 11.4%,
respectively.



Table 3
Result summary for Example 1.

Cases f 0c (MPa) tc (mm) Steel section Shear connectors Beam cost ($) % Cost saving

Diameter (mm) Number

First 25 160 W410 � 38.8 19 24 1777 2.9
Second 25 100 W410 � 46.1 19 32 1392 23.9
Third 35 100 W410 � 46.1 19 24 1366 25.3
AISC 25 160 W410 � 38.8 19 40 1830

Table 4
Result summary for Example 2.

Cases f 0c (MPa) tc (mm) Steel section Shear connectors Beam cost ($) % Cost saving

Diameter (mm) Number

First 25 190 W610 � 82.0 22 44 3328 2.3
Second 25 160 W610 � 82.0 22 56 3183 6.6
Third 40 100 W610 � 82.0 22 56 3017 11.4
AISC 25 190 W610 � 82.0 19 68 3407

Table 2
Input data for Examples 1 and 2.

Example
number

Beam span
(m)

Beam spacing
(m)

Dead load
(kN/m)

Live load
(kN/m)

Concrete unit
weight (kg/m3)

f 0c (MPa) tc (mm) Fy (MPa) Stud diameter
(mm)

Construction
type (mm)

1 9 3 13.0 19.0 1845 25 160 345 19 Shored
2 12 3 13.5 36.0 2320 25 190 345 19 Unshored
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5. Parametric study

A parametric study was also presented to investigate the effects
of beam spans and loadings on the cost optimization of composite
beams. Table 5 summarizes the beam spans and the loadings con-
sidered in the study. A concrete strength of 30 MPa and a concrete
slab thickness of 100 mm were also selected.

Table 6 summarizes the design results obtained in the case
study using the present model. As expected, the steel section size
Table 5
Parametric study.

Beam spacing (m) Load combinations Beam spans

Dead (kN/m) Live (kN/m) (m) (m) (m) (m)

3 10 20 4 6 8 10
3 20 29 4 6 8 10
3 30 49 4 6 8 10

Table 6
Parametric study results.

Dead loads
DD (kN/m)

Live loads LL
(kN/m)

Beam
spacing
(m)

Beam
span (m)

Concrete
strength f 0c (Mpa)

Concrete
thicknes

10 20 3 4 30 100
6 30 100
8 30 100

10 30 100
20 29 3 4 30 100

6 30 100
8 30 100

10 30 100
30 49 3 4 30 100

6 30 100
8 30 100

10 30 100
increases with both the beam span and the acting loads as to sat-
isfy the strength and the deflection constraints. Similarly, the size
and the number of studs increase with both the beam span and
the loadings as to satisfy force and moment equilibrium. Fig. 5
shows the curves representing the variations between the total
costs and the beam spans under three different loadings. The
curves for the three loading combinations. The curves have the
same non-linear trend that increases with the beam span. Table
7 summarizes the second-order polynomial fits between the beam
costs and the spans, which can be used to get an initial estimation
of the total cost under a given span length or a given loading
combination.

6. Conclusions

A robust optimization model is developed to perform the cost
optimization of composite beams. The proposed model enables
structural designers to generate and evaluate optimal/near-opti-
slab
s tc (mm)

Steel section
W-shape

Shear stud
diameter STD (mm)

Shear stud
number NS

Beam total
cost ($)

W200 � 15 13 10 495
W310 � 23.8 19 10 770
W360 � 39.0 22 10 1152
W460 � 52.0 22 12 1583
W310 � 21.0 19 10 523
W360 � 39.0 19 10 875
W460 � 52.0 22 16 1304
W530 � 74.0 22 22 1896
W310 � 28.3 19 10 556
W460 � 52.0 22 10 965
W610 � 82.0 22 10 1547
W610 � 113.0 22 22 2346



Table 7
Polynomial best-fit equations.

Dead load (kN/m) Live load (kN/m) Beam span (m) Beam total cost ($) Coefficient of determination (R2)

10 20 L 24.47L2 � 44.92L + 346.8 0.9999
20 29 L 14.974L2 + 17.835L + 216.1 0.9996
30 49 L 9.81L2 + 45.10L + 154.8 0.9998

Fig. 5. Optimal composite design total costs.
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mal design solutions. To accomplish this, the model incorporates
(1) a design module that performs the design of composite beams;
(2) a cost module that computes the total cost of composite beams;
and (3) an optimization module that searches for and identifies
optimal/near-optimal design alternatives. Two examples and a
case study were used to illustrate the capabilities of the developed
model in generating all optimal design solutions that achieve min-
imum total costs. Substantial cost savings were achieved by using
the present model. This new capability should prove useful to
structural designers and is expected to advance existing design
practices of composite beams.
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