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1 Introduction

This paper considers the constrained convex programming problem with the following separate

structure:

min
{
θ1(x) + θ2(y)|Ax+By = b, x ∈ Rn

+, y ∈ Rm
+

}
, (1.1)

where θ1 : Rn
+ → R and θ2 : Rm

+ → R are closed proper convex functions not necessarily

smooth, A ∈ Rl×n, B ∈ Rl×m are given matrices and b ∈ Rl is a given vector.

A very rich class of applications may be modeled as problem (1.1). In practice these classes

1Corresponding author. Fax: +212 528232007.

E-mail address: babedallah@yahoo.com (A. Bnouhachem).

1



of problems have very large size and due to their practical importance, they have received

a great deal of attention from many researchers. Various methods have been suggested, a

popular approach is the alternating direction method (ADM) which was proposed by Gabay

and Mercier [14] and Gabay [13]. The ADM can reduce the scale of variational inequalities by

decomposing the original problem into a series of subproblems with a lower scale. To make

the ADM more efficient and practical some strategies have been studied, for more details, one

can refer [7, 10, 18, 21, 22, 26, 29].

Let ∂(.) denote the sub-gradient operator of a convex function, and f(x) ∈ ∂θ1(x) and

g(y) ∈ ∂θ2(y) are the sub-gradient of θ1(x) and θ2(y), respectively. By attaching a Lagrange

multiplier vector λ ∈ Rl to the linear constraint Ax + By = b, problem (1.1) can be written

in terms of finding w ∈ W such that

(w′ − w)⊤Q(w) ≥ 0, ∀ w′ ∈ W, (1.2)

where

w =


x

y

λ

 Q(w) =


f(x)−A⊤λ

g(y)−B⊤λ

Ax+By − b

 , W = Rn
+ ×Rm

+ ×Rl. (1.3)

Problem (1.2)–(1.3) is referred to as structured variational inequalities (in short, SVI).

Very recently, Yuan and Li [30] developed the following logarithmic-quadratic proximal (LQP)-

based decomposition method by applying the LQP terms to regularize the ADM subproblem-

s: For a given wk = (xk, yk, λk) ∈ Rn
++ × Rm

++ × Rl, and µ ∈ (0, 1), the new iterative

(xk+1, yk+1, λk+1) is obtained via solving the following system:

f(x)−A⊤
[
λk −H(Ax+Byk − b)

]
+R

[
(x− xk) + µ(xk −X2

kx
−1)
]
= 0, (1.4)

g(y)−B⊤
[
λk −H(Ax+By − b)

]
+ S

[
(y − yk) + µ(yk − Y 2

k y
−1)
]
= 0, (1.5)

λk+1 = λk −H(Axk +Byk − b), (1.6)

where H ∈ Rl×l, R ∈ Rn×n, and S ∈ Rm×m are symmetric positive definite.

Note that the LQP method was presented originally in [1]. It seems that it is easier to solve

a series of systems of nonlinear equations than to solve a series of sub-variational inequalities

in many cases. Later, Bnouhachem et al. [3, 4] and Li [24] proposed some LQP alternating

direction methods and made the LQP alternating direction method more practical. Each

iteration of the above methods contains a prediction and a correction, the predictor is obtained

via solving (1.4)-(1.6) and the new iterate is obtained by a convex combination of the previous
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point and the one generated by a projection-type method along a descent direction for [3, 24],

while the new iterate is computed directly by an explicit formula derived from the original LQP

method for [4]. The main disadvantage of the methods in [2, 3, 4, 5, 24, 30] is that solving

the equation (1.5) requires the solution of equation (1.4). Hence, the alternating direction

methods are not eligible for parallel computing in the sense that the solutions of (1.4)-(1.5)

cannot be obtained simultaneously. This characteristic excludes the possibility of applying

some advanced computing technologies to solve (1.4)-(1.5).

To overcome this difficulty, we propose a parallel descent LQP alternating direction method

for solving SVI. The main advantage of the proposed method is that the predictor is obtained

via solving a system of nonlinear equations in a parallel wise and the new iterate is obtained

by searching the optimal step size along the integrated descent direction from two descent

directions. Our results can be viewed as significant extensions of the previously known results.

2 The proposed method

This section states some preliminaries that are useful later. The first lemma provides some

basic properties of projection onto Ω.

Lemma 2.1 Let G be a symmetry positive definite matrix and Ω be a nonempty closed convex

subset of Rl, we denote by PΩ,G(.) the projection under the G-norm, that is,

PΩ,G(v) = argmin{∥v − u∥G : u ∈ Ω}.

Then, we have the following inequalities.

(z − PΩ,G[z])
⊤G(PΩ,G[z]− v) ≥ 0, ∀ z ∈ Rl, v ∈ Ω; (2.1)

∥PΩ,G[u]− PΩ,G[v]∥G ≤ ∥u− v∥G, ∀ u, v ∈ Rl; (2.2)

∥u− PΩ,G[z]∥2G ≤ ∥z − u∥2G − ∥z − PΩ,G[z]∥2G, ∀ z ∈ Rl, u ∈ Ω. (2.3)

We make the following standard assumptions.

Assumption A. f is monotone with respect to Rn
+ and g is monotone with respect to Rm

+ ,

Assumption B. The solution set of SVI, denoted by W∗, is nonempty.
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We propose the following parallel LQP alternating direction method for solving SVI:

Algorithm 2.1.

Step 0. The initial step:

Given ε > 0, µ ∈ (0, 1), β1 ≥ 0, β2 ≥ 0 (β1 + β2 > 0) and w0 = (x0, y0, λ0) ∈ Rn
++ ×

Rm
++ ×Rl. Set k = 0.

Step 1. Prediction step:

Compute w̃k = (x̃k, ỹk, λ̃k) ∈ Rn
++ ×Rm

++ ×Rl by solving the following system:

f(x)−AT [λk −H(Ax+Byk − b)] +R[(x− xk) + µ(xk −X2
kx

−1)] = 0, (2.4)

g(y)−BT [λk −H(Axk +By − b)] + S[(y − yk) + µ(yk − Y 2
k y

−1)] = 0, (2.5)

λ̃k = λk −H(Ax̃k +Bỹk − b). (2.6)

Step 2. Convergence verification:

If max{∥xk − x̃k∥∞, ∥yk − ỹk∥∞, ∥λk − λ̃k∥∞} < ϵ, then stop.

Step 3. Correction step:

The new iterate wk+1(αk) = (xk+1, yk+1, λk+1) is given by:

wk+1(αk) = (1− σ)wk + σPW [wk − αkG
−1d(wk, w̃k)], σ ∈ (0, 1) (2.7)

where

αk =
φk

(β1 + β2)∥wk − w̃k∥2G
, (2.8)

φk = ∥wk − w̃k∥2M + (λk − λ̃k)T (A(xk − x̃k) +B(yk − ỹk)), (2.9)

d(wk, w̃k) = β1D(wk, w̃k) + β2G(wk − w̃k),

D(wk, w̃k) =


f(x̃k)−AT λ̃k +ATH(A(xk − x̃k) +B(yk − ỹk))

g(ỹk)−BT λ̃k +BTH(A(xk − x̃k) +B(yk − ỹk))

Ax̃k +Bỹk − b


and

G =


(1 + µ)R+ATHA 0 0

0 (1 + µ)S +BTHB 0

0 0 H−1

 ,M =


R+ATHA 0 0

0 S +BTHB 0

0 0 H−1

 .
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Set k := k + 1 and go to Step1.

Remark 2.1 The main disadvantage of the methods proposed in [2, 3, 4, 5, 24, 30] is that the

unknown vectors x and y in (1.5) are overlapped. Note that the eligibility of parallel computing

is particularly preferable when the involved LQP system in (1.4)-(1.5) are large scale and thus

time consuming. So, we propose to solve systems of nonlinear equations (2.4)-(2.5) in a parallel

wise.

By using as special case of our method, we can obtain some new LQP alternating methods for

example:

• If xk+1 = x̃k, yk+1 = ỹk and λk+1 = λ̃k in (2.4), (2.5) and (2.6), respectively, we obtain

a new method which is different from that proposed in [30]. In our proposed method,

problems (2.4) and (2.5), which produce x̃k and ỹk, are parallel decomposed.

• If β1 = 0 and β2 = 1, we obtain a new method, the new iterate is obtained along a new

descent direction (wk − w̃k). Also the new iterate in [24] is obtained along the descent

direction (wk − w̃k). But two descent directions are different, problems (2.4) and (2.5),

which produce the first descent direction (wk − w̃k), are parallel decomposed. While the

vectors x̃k and ỹk in problems (1.4) and (1.5), which offer the second descent direction

(wk − w̃k), are overlapped.

• If β1 = 1 and β2 = 0, we obtain the method proposed in [6].

Therefore, the new algorithm is expected to be widely applicable.

Remark 2.2 It is easy to check that w̃k = (x̃k, ỹk, λ̃k) is solution of SVI if and only if
xk − x̃k = 0,

yk − ỹk = 0,

λk − λ̃k = 0.

Hence, the stopping criterion adopted here is reasonable: if it is satisfied with a small ϵ, we

can regard the current iterate as an approximate solution.

Remark 2.3 We use the convex combination of wk and PW [wk − αkG
−1d(wk, w̃k)] in (2.7)

to ensure that the elements (xk+1, yk+1) of the new iterate wk+1(αk) = (xk+1, yk+1, λk+1) lie

in ∈ Rn
++ ×Rm

++.
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We need the following result in the convergence analysis of the proposed method.

Lemma 2.2 [30] Let q(u) ∈ Rn be a monotone mapping of u with respect to Rn
+ and R ∈ Rn×n

be a positive definite diagonal matrix. For a given uk > 0, if Uk := diag(uk1, u
k
2, · · · , ukn) and

u−1 be an n-vector whose j-th element is 1/uj, then the equation

q(u) +R[(u− uk) + µ(uk − U2
ku

−1)] = 0 (2.10)

has a unique positive solution u. Moreover, for any v ≥ 0, we have

(v − u)⊤q(u) ≥ 1+µ
2

(
∥u− v∥2R − ∥uk − v∥2R

)
+ 1−µ

2 ∥uk − u∥2R. (2.11)

In the next theorem we show that αk is lower bounded away from zero and it is useful for

the convergence analysis.

Theorem 2.1 For given wk ∈ Rn
++ ×Rm

++ ×Rl, let w̃k be generated by (2.4)-(2.6), then we

have the following

φk ≥ 2−
√
2

2
∥wk − w̃k∥2G (2.12)

and

αk ≥ 2−
√
2

2
. (2.13)

Proof: It follows from (2.9) that

φk = ∥wk − w̃k∥2M + (λk − λ̃k)T (A(xk − x̃k) +B(yk − ỹk))

= ∥xk − x̃k∥2R + ∥Axk −Ax̃k∥2H + ∥yk − ỹk∥2S + ∥Byk −Bỹk∥2H + ∥λk − λ̃k∥2H−1

+(λk − λ̃k)T (A(xk − x̃k) +B(yk − ỹk)). (2.14)

By using the CauchySchwarz Inequality, we have

(λk − λ̃k)T (A(xk − x̃k)) ≥ −1

2

(√
2∥A(xk − x̃k)∥2H +

1√
2
∥λk − λ̃k∥2H−1

)
(2.15)

and

(λk − λ̃k)T (B(yk − ỹk)) ≥ −1

2

(√
2∥B(yk − ỹk)∥2H +

1√
2
∥λk − λ̃k∥2H−1

)
. (2.16)
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Substituting (2.15) and (2.16) into (2.14), we get

φk ≥ 2−
√
2

2

(
∥Axk −Ax̃k∥2H + ∥Byk −Bỹk∥2H + ∥λk − λ̃k∥2H−1

)
+ ∥xk − x̃k∥2R + ∥yk − ỹk∥2S

≥ 2−
√
2

2

(
∥Axk −Ax̃k∥2H + ∥Byk −Bỹk∥2H + ∥λk − λ̃k∥2H−1

)
+(2−

√
2)
(
∥xk − x̃k∥2R + ∥yk − ỹk∥2S

)
=

2−
√
2

2
(∥wk − w̃k∥2G + (1− µ)∥xk − x̃k∥2R + (1− µ)∥yk − ỹk∥2S)

≥ 2−
√
2

2
∥wk − w̃k∥2G.

Therefore, it follows from (2.8) and (2.12) that

αk ≥ 2−
√
2

2

and this completes the proof. ⊓⊔

3 Basic results

In this section, we prove some basic properties, which will be used to establish the sufficient

and necessary conditions for the convergence of the proposed method. The following results

are due to applying Lemma 2.2 to the LQP systems in the prediction step of the proposed

method.

Lemma 3.1 For given wk = (xk, yk, λk) ∈ Rn
++ × Rm

++ × Rl, let w̃k be generated by (2.4)–

(2.6). Then for any w∗ = (x∗, y∗, λ∗) ∈ W∗, we have

(wk − w∗)⊤G(wk − w̃k) ≥ ∥wk − w̃k∥2G − µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S

+(λk − λ̃k)⊤
(
A(xk − x̃k) +B(yk − ỹk)

) (3.1)

and

(wk
∗ − w̃k)⊤D(wk, w̃k) ≥ (wk

∗ − wk)⊤G(wk − w̃k) + ∥wk − w̃k∥2G

−µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S ,
(3.2)

where

wk
∗ = (xk∗, y

k
∗ , λ

k
∗) := PW [wk − αkG

−1d(wk, w̃k)]. (3.3)

Proof: Applying Lemma 2.2 to (2.4) by setting uk = xk, u = x̃k, v = x∗ in (2.11) and

q(u) = f(x̃k)−A⊤[λk −H(Ax̃k +Byk − b)],
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we get

(x∗ − x̃k)⊤
{
f(x̃k)−AT

[
λk −H(Ax̃k +Byk − b)]

}
≥ 1+µ

2

(
∥x̃k − x∗∥2R − ∥xk − x∗∥2R

)
+ 1−µ

2 ∥xk − x̃k∥2R.
(3.4)

Recall

(x∗ − x̃k)⊤R(xk − x̃k) =
1

2

(
∥x̃k − x∗∥2R − ∥xk − x∗∥2R

)
+

1

2
∥xk − x̃k∥2R. (3.5)

Adding (3.4) and (3.5), we obtain

(x∗ − x̃k)⊤
{
(1 + µ)R(xk − x̃k)− f(x̃k) +A⊤λ̃k +ATHA(xk − x̃k)

−ATH
(
A(xk − x̃k) +B(yk − ỹk)

)}
≤ µ∥xk − x̃k∥2R.

(3.6)

Similarly, applying Lemma 2.2 to (2.5), substituting uk = yk, u = ỹk, v = y∗ and replacing R,

n with S, m, respectively in (2.11) and

q(u) = g(ỹk)−B⊤[λk −H(Axk +Bỹk − b)],

we get

(y∗ − ỹk)⊤
{
g(ỹk)−B⊤[λk −H(Axk +Bỹk − b)]

}
≥ 1+µ

2

(
∥ỹk − y∗∥2S − ∥yk − y∗∥2S

)
+ 1−µ

2 ∥yk − ỹk∥2S .
(3.7)

Recall

(y∗ − ỹk)⊤S(yk − ỹk) =
1

2

(
∥ỹk − y∗∥2S − ∥yk − y∗∥2S

)
+

1

2
∥yk − ỹk∥2S . (3.8)

Adding (3.7) and (3.8), we have

(y∗ − ỹk)⊤
{
(1 + µ)S(yk − ỹk)− g(ỹk) +B⊤λ̃k +BTHB(yk − ỹk)

−BTH(A(xk − x̃k) +B(yk − ỹk))
}
≤ µ∥yk − ỹk∥2S , (3.9)

Since (x∗, y∗, λ∗) is a solution of SVI, x̃k ∈ Rn
++ and ỹk ∈ Rm

++, we have

(x̃k − x∗)⊤(f(x∗)−A⊤λ∗) ≥ 0,

(ỹk − y∗)⊤(g(y∗)−B⊤λ∗) ≥ 0,

and

Ax∗ +By∗ − b = 0.

Using the monotonicity of f and g, we obtain
x̃k − x∗

ỹk − y∗

λ̃k − λ∗


⊤

f(x̃k)−A⊤λ̃k

g(ỹk)−B⊤λ̃k

Ax̃k +Bỹk − b

 ≥


x̃k − x∗

ỹk − y∗

λ̃k − λ∗


⊤

f(x∗)−A⊤λ∗

g(y∗)−B⊤λ∗

Ax∗ +By∗ − b

 ≥ 0. (3.10)
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Adding (3.6), (3.9) and (3.10), we get

(w∗ − w̃k)⊤G(wk − w̃k)

= (x∗ − x̃k)⊤((1 + µ)R(xk − x̃k) +A⊤HA(xk − x̃k))

+(y∗ − ỹk)⊤((1 + µ)S(yk − ỹk) +B⊤HB(yk − ỹk))

+(λ∗ − λ̃k)⊤(Ax̃k +Bỹk − b)

≤ µ∥xk − x̃k∥2R + (x∗ − x̃k)⊤A⊤H
(
A(xk − x̃k) +B(yk − ỹk)

)
+(y∗ − ỹk)⊤B⊤H

(
A(xk − x̃k) +B(yk − ỹk)

)
+ µ∥yk − ỹk∥2S

= µ∥xk − x̃k∥2R − (Ax̃k +Bỹk − b)⊤H
(
A(xk − x̃k) +B(yk − ỹk)

)
+ µ∥yk − ỹk∥2S

= µ∥xk − x̃k∥2R − (λk − λ̃k)⊤
(
A(xk − x̃k) +B(yk − ỹk)

)
+ µ∥yk − ỹk∥2S

(3.11)

where the last equality follows from (2.6). It follows from (3.11) that

(wk − w∗)⊤G(wk − w̃k)

≥ ∥wk − w̃k∥2G − µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S + (λk − λ̃k)⊤
(
A(xk − x̃k) +B(yk − ỹk)

)
and the first assertion of this lemma is proved.

Similarly as in (3.6) and (3.9), we have

(xk∗ − x̃k)⊤
{
(1 + µ)R(xk − x̃k)− f(x̃k) +A⊤λ̃k +ATHA(xk − x̃k)

−ATH
(
A(xk − x̃k) +B(yk − ỹk)

)}
≤ µ∥xk − x̃k∥2R

(3.12)

and

(yk∗ − ỹk)T
{
(1 + µ)S(yk − ỹk)− g(ỹk) +B⊤λ̃k +BTHB(yk − ỹk)

−BTH(A(xk − x̃k) +B(yk − ỹk))
}
≤ µ∥yk − ỹk∥2S .

(3.13)

It follows from (3.12) and (3.13) that
xk
∗ − x̃k

yk∗ − ỹk

λk
∗ − λ̃k


⊤

((1 + µ)R+ATHA)(xk − x̃k)− f(x̃k) +A⊤λ̃k −ATH
(
A(xk − x̃k) +B(yk − ỹk)

)
((1 + µ)S +B⊤HB)(yk − ỹk)− g(ỹk) +B⊤λ̃k −BTH(A(xk − x̃k) +B(yk − ỹk))

H−1(λk − λ̃k)− (Ax̃k +Bỹk − b)


≤ µ∥xk − x̃k∥2R + µ∥yk − ỹk∥2S ,

which implies

(wk
∗ − w̃k)⊤(G(wk − w̃k)−D(wk, w̃k))− µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S ≤ 0.
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By simple manipulation, we obtain

(wk
∗ − w̃k)⊤D(wk, w̃k)

≥ (wk
∗ − w̃k)⊤G(wk − w̃k)− µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S

= (wk
∗ − wk)⊤G(wk − w̃k) + ∥wk − w̃k∥2G − µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S

and the second assertion of this lemma is proved. ⊓⊔ The following theorem provides a

unified framework for proving the convergence of the new algorithm.

Theorem 3.1 Let w∗ ∈ W∗, wk+1(αk) be defined by (2.7) and

Θ(αk) := ∥wk − w∗∥2G − ∥wk+1(αk)− w∗∥2G, (3.14)

then

Θ(αk) ≥ σ(∥wk − wk
∗ − αk(β1 + β2)(w

k − w̃k)∥2G

+2αk(β1 + β2)φk − α2
k(β1 + β2)

2∥wk − w̃k∥2G).
(3.15)

Proof: Since w∗ ∈ W∗ and wk
∗ = PW [wk − αkG

−1d(wk, w̃k)], it follows from (2.3) that

∥wk
∗ − w∗∥2G ≤ ∥wk − αkG

−1d(wk, w̃k)− w∗∥2G − ∥wk − αkG
−1d(wk, w̃k)− wk

∗∥2G. (3.16)

From (2.7), we get

∥wk+1(αk)− w∗∥2G

= ∥(1− σ)(wk − w∗) + σ(wk
∗ − w∗)∥2G

= (1− σ)2∥wk − w∗∥2G + σ2∥wk
∗ − w∗∥2G + 2σ(1− σ)(wk − w∗)TG(wk

∗ − w∗).

Using the following identity

2(a+ b)⊤Gb = ∥a+ b∥2G − ∥a∥2G + ∥b∥2G
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for a = wk − wk
∗ , b = wk

∗ − w∗, and (3.16), we obtain

∥wk+1(αk)− w∗∥2G

= (1− σ)2∥wk − w∗∥2G + σ2∥wk
∗ − w∗∥2G + σ(1− σ){∥wk − w∗∥2G

−∥wk − wk
∗∥2G + ∥wk

∗ − w∗∥2G}

= (1− σ)∥wk − w∗∥2G + σ∥wk
∗ − w∗∥2G − σ(1− σ)∥wk − wk

∗∥2G

≤ (1− σ)∥wk − w∗∥2G + σ∥wk − αkG
−1d(wk, w̃k)− w∗∥2G

−σ∥wk − αkG
−1d(wk, w̃k)− wk

∗∥2G − σ(1− σ)∥wk − wk
∗∥2G

≤ (1− σ)∥wk − w∗∥2G + σ∥wk − αkG
−1d(wk, w̃k)− w∗∥2G

−σ∥wk − αkG
−1d(wk, w̃k)− wk

∗∥2G.

(3.17)

Using the definition of Θ(αk) and (3.17), we get

Θ(αk) ≥ σ∥wk − wk
∗∥2G + 2σαk(w

k
∗ − wk)Td(wk, w̃k)

+2σαk(w
k − w∗)Td(wk, w̃k). (3.18)

It follows from (3.10) that

(w̃k − w∗)⊤D(wk, w̃k) ≥ (w̃k − w∗)⊤


A⊤H

(
A(xk − x̃k) +B(yk − ỹk)

)
B⊤H

(
A(xk − x̃k) +B(yk − ỹk)

)
0


= (Ax̃k +Bx̃k − b)⊤H

(
A(xk − x̃k) +B(yk − ỹk)

)
= (λk − λ̃k)⊤

(
A(xk − x̃k) +B(yk − ỹk)

)
.

Thus,

(wk − w∗)⊤D(wk, w̃k) ≥ (wk − w̃k)⊤D(wk, w̃k) + (λk − λ̃k)⊤
(
A(xk − x̃k) +B(yk − ỹk)

)
.

(3.19)
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Applying (3.1) and (3.19) to the last term on the right side of (3.18), we obtain

Θ(αk) ≥ σ∥wk − wk
∗∥2G + 2σαk(w

k
∗ − wk)⊤d(wk, w̃k)

+2σαk{β1(wk − w̃k)⊤D(wk, w̃k) + (β1 + β2)(λ
k − λ̃k)⊤

(
A(xk − x̃k) +B(yk − ỹk)

)
+β2∥wk − w̃k∥2G − β2µ∥xk − x̃k∥2R − β2µ∥yk − ỹk∥2S}

= σ{∥wk − wk
∗∥2G + 2αkβ1(w

k
∗ − w̃k)⊤D(wk, w̃k)

+2αkβ2(w
k
∗ − wk)⊤G(wk − w̃k)

+2αk(β1 + β2)(λ
k − λ̃k)⊤

(
A(xk − x̃k) +B(yk − ỹk)

)
+2αkβ2∥wk − w̃k∥2G − 2αkβ2µ∥xk − x̃k∥2R − 2αkβ2µ∥yk − ỹk∥2S}.

(3.20)

Applying (3.2) to the second term in the right side of (3.20) and using the notation of φk in

(2.9), we get

Θ(αk) ≥ σ{∥wk − wk
∗∥2G + 2αk(β1 + β2)(w

k
∗ − wk)⊤G(wk − w̃k)

+2αk(β1 + β2)
[
∥wk − w̃k∥2G − µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S

+(λk − λ̃k)⊤
(
A(xk − x̃k) +B(yk − ỹk)

) ]
}

= σ{∥wk − wk
∗ − αk(β1 + β2)(w

k − w̃k)∥2G

−α2
k(β1 + β2)

2∥wk − w̃k∥2G + 2αk(β1 + β2)φk}

and the theorem is proved. ⊓⊔

From the computational point of view, a relaxation factor γ ∈ (0, 2) is preferable in the

correction. We are now in a position to prove the contractive property of the iterative sequence.

Theorem 3.2 Let w∗ ∈ W∗ be a solution of SVI and let wk+1(γαk) be generated by (2.7).

Then wk and w̃k are bounded, and

∥wk+1(γαk)− w∗∥2G ≤ ∥wk − w∗∥2G − c∥wk − w̃k∥2G, (3.21)

where

c := σγ(2−γ)(2−
√
2)2

4 > 0.
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Proof: It follows from (3.15), (2.12) and (2.13) that

∥wk+1(γαk)− w∗∥2G

≤ ∥wk − w∗∥2G − σ(2γαk(β1 + β2)φk − γ2α2
k(β1 + β2)

2∥wk − w̃k∥2G)

= ∥wk − w∗∥2G − γ(2− γ)(β1 + β2)αkσφk

≤ ∥wk − w∗∥2G − σγ(2−γ)(2−
√
2)2

4 ∥wk − w̃k∥2G.

Since γ ∈ (0, 2), we have

∥wk+1 − w∗∥G ≤ ∥wk − w∗∥G ≤ · · · ≤ ∥w0 − w∗∥G,

and thus, {wk} is a bounded sequence.

It follows from (3.21) that

∞∑
k=0

c∥wk − w̃k∥2G < +∞.

which means that

lim
k→∞

∥wk − w̃k∥G = 0. (3.22)

Since {wk} is a bounded sequence, we conclude that {w̃k} is also bounded. ⊓⊔

4 Convergence of the proposed method

In this section, we prove the global convergence of the proposed method. The following results

can be proved by using the technique of Lemma 5.1 and Theorem 5.1 in [2].

Lemma 4.1 For given wk = (xk, yk, λk) ∈ Rn
++×Rm

++×Rl, let w̃k = (x̃k, ỹk, λ̃k) be generated

by (2.4)-(2.6). Then for any w = (x, y, λ) ∈ W , we have

(x− x̃k)T
(
f(x̃k)−AT λ̃k −ATHA(xk − x̃k) +ATH

(
A(xk − x̃k) +B(yk − ỹk)

))
≥ (xk − x̃k)TR

{
(1 + µ)x− (µxk + x̃k)

}
(4.1)

and

(y − ỹk)T
(
g(ỹk)−BT λ̃k −BTHB(yk − ỹk) +BTH

(
A(xk − x̃k) +B(yk − ỹk)

))
≥ (yk − ỹk)TS

{
(1 + µ)y − (µyk + ỹk)

}
. (4.2)
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Proof: Applying Lemma 2.2 to prediction step of LQP-ADM (by setting uk = xk, u = x̃k,

q(u) = f(x̃k)−AT
[
λk −H(Ax̃k +Byk − b)] and v = x in (2.11)), it follows that

(x− x̃k)T
{
f(x̃k)−AT

[
λk −H(Ax̃k +Byk − b)]

}
≥ 1+µ

2

(
∥x̃k − x∥2R − ∥xk − x∥2R

)
+ 1−µ

2 ∥xk − x̃k∥2R,

which implies

(x− x̃k)T
(
f(x̃k)−AT λ̃k −ATHA(xk − x̃k) +ATH

(
A(xk − x̃k) +B(yk − ỹk)

))
≥ 1+µ

2

(
∥x̃k − x∥2R − ∥xk − x∥2R

)
+ 1−µ

2 ∥xk − x̃k∥2R.

By a simple manipulation, we have

1+µ
2

(
∥x̃k − x∥2R − ∥xk − x∥2R

)
+ 1−µ

2 ∥xk − x̃k∥2R

= (1 + µ)xTRxk − (1 + µ)xTRx̃k − (1− µ)(x̃k)TRxk − µ∥xk∥2R + ∥x̃k∥2R

= (1 + µ)xTR(xk − x̃k)− (xk − x̃k)TR(µxk + x̃k)

= (xk − x̃k)TR
{
(1 + µ)x−

(
µxk + x̃k

)}
,

and the assertion (4.1) is proved. Similarly we can prove the assertion (4.2). ⊓⊔

Now, we are ready to prove the convergence of the proposed method.

Theorem 4.1 The sequence {wk} generated by the proposed method converges to some w∞

which is a solution of SVI.

Proof: It follows from (3.22) that

lim
k→∞

∥xk − x̃k∥R = 0, lim
k→∞

∥yk − ỹk∥S = 0 (4.3)

and

lim
k→∞

∥λk − λ̃k∥H−1 = lim
k→∞

∥Ax̃k +Bỹk − b∥H = 0. (4.4)

Moreover, (4.1) and (4.2) imply that

(x− x̃k)T (f(x̃k)−AT λ̃k) ≥ (xk − x̃k)TR
{
(1 + µ)x− (µxk + x̃k)

}
+(x− x̃k)T

(
ATHA(xk − x̃k)−ATH

(
A(xk − x̃k) +B(yk − ỹk)

))
and

(y − ỹk)T (g(ỹk)−BT λ̃k) ≥ (yk − ỹk)TS
{
(1 + µ)y − (µyk + ỹk)

}
+(y − ỹk)T

(
BTHB(yk − ỹk)−BTH

(
A(xk − x̃k) +B(yk − ỹk)

))
.
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We deduce from (4.3) that
limk→∞(x− x̃k)T {f(x̃k)−AT λ̃k} ≥ 0, ∀x ∈ Rn

++,

limk→∞(y − ỹk)T {g(ỹk)−BT λ̃k} ≥ 0, ∀y ∈ Rm
++.

(4.5)

Since {wk} is bounded, it has at least one cluster point. Let w∞ be a cluster point of {wk}

and the subsequence {wkj} converges to w∞, since W is closed set, we have w∞ ∈ W. It

follows from (4.4) and (4.5) that (4.5) that
limj→∞(x− xkj )T {f(xkj )−ATλkj} ≥ 0, ∀x ∈ Rn

++,

limj→∞(y − ykj )T {g(ykj )−BTλkj ≥ 0, ∀y ∈ Rm
++,

limj→∞(Axkj +Bykj − b) = 0.

and consequently 
(x− x∞)T {f(x∞)−ATλ∞} ≥ 0, ∀x ∈ Rn

++,

(y − y∞)T {g(y∞)−BTλ∞} ≥ 0, ∀y ∈ Rm
++,

Ax∞ +By∞ − b = 0,

which means that w∞ is a solution of SVI.

Now we prove that the sequence {wk} converges to w∞. Since

lim
k→∞

∥wk − w̃k∥G = 0, and {w̃kj} → w∞,

for any ϵ > 0, there exists an l > 0 such that

∥w̃kl − w∞∥G <
ϵ

2
and ∥wkl − w̃kl∥G <

ϵ

2
. (4.6)

Therefore, for any k ≥ kl, it follows from (3.21) and (4.7) that

∥wk − w∞∥G ≤ ∥wkl − w∞∥G ≤ ∥wkl − w̃kl∥G + ∥w̃kl − w∞∥G < ϵ.

This implies that the sequence {wk} converges to w∞ which is a solution of SVI.

Now we prove that the sequence {wk} converges to w∞. Since

lim
k→∞

∥wk − w̃k∥G = 0, and {w̃kj} → w∞,

for any ϵ > 0, there exists an l > 0 such that∥∥∥w̃kl − w∞
∥∥∥
G
<

ϵ

2
and

∥∥∥wkl − w̃kl
∥∥∥
G
<

ϵ

2
. (4.7)

Therefore, for any k ≥ kl, it follows from (3.21) and (4.7) that

∥wk − w∞∥G ≤ ∥wkl − w∞∥G ≤ ∥wkl − w̃kl∥G + ∥w̃kl − w∞∥G < ϵ.

This implies that the sequence {wk} converges to w∞ which is a solution of SVI. ⊓⊔
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5 O(1/t) Convergence Rate

In this section, we show by taking β1 = 1 and β2 = 0 that the proposed method has the O(1/t)

convergence rate. Recall that W∗ can be characterized as (see (2.3.2) in pp. 159 of [11])

W∗ =
∩

w∈W
{ŵ ∈ W : (w − ŵ)TQ(w) ≥ 0}.

This implies that ŵ is an approximate solution SVI of with the accuracy ϵ > 0 if it satisfies

ŵ ∈ W and sup
w∈W

{(w − ŵ)TQ(w)} ≤ ϵ. (5.1)

In the rest, our purpose is to show that after t iterations of the proposed method, we can find

a ŵ ∈ W such that (5.1) is satisfied with ϵ = O(1/t). Since β1 = 1 and β2 = 0, we have

d(wk, w̃k) =


f(x̃k)−AT λ̃k +ATH(A(xk − x̃k) +B(yk − ỹk))

g(ỹk)−BT λ̃k +BTH(A(xk − x̃k) +B(yk − ỹk))

Ax̃k +Bỹk − b

 . (5.2)

We introduce some matrices

N =


I 0 0

0 I 0

0 0 0

 and C =


(1 + µ)R+ATHA 0 0

0 (1 + µ)S +BTHB 0

−A −B H−1

 . (5.3)

By simple manipulations, we can find that C = GN.

Our analysis needs a new sequence defined by

ŵk =


x̂k

ŷk

λ̂k

 =


x̃k

ỹk

λk −H(Axk +Byk − b)

 . (5.4)

Based on (5.3) and (5.4), we easily have a relationship

(wk − w̃k) = N(wk − ŵk). (5.5)

Using (1.3), (5.2) and (5.4), we obtain

d(wk, w̃k) = Q(ŵk). (5.6)

Lemma 5.1 Let ŵk be defined by (5.4), w ∈ W and the matrix C be given in (5.3). Then,

we have

(w − ŵk)T (Q(ŵk)− C(w − ŵk)) ≥ −µ∥xk − x̂k∥2R − µ∥yk − ŷk∥2S . (5.7)
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Proof: It follows from (3.6) and (3.9) that

(x− x̃k)⊤
{
(1 + µ)R(xk − x̃k)− f(x̃k) +A⊤λ̃k +ATHA(xk − x̃k)

−ATH
(
A(xk − x̃k) +B(yk − ỹk)

)}
≤ µ∥xk − x̃k∥2R, x ∈ Rn

++

(5.8)

and

(y − ỹk)⊤
{
(1 + µ)S(yk − ỹk)− g(ỹk) +B⊤λ̃k +BTHB(yk − ỹk)

−BTH(A(xk − x̃k) +B(yk − ỹk))
}
≤ µ∥yk − ỹk∥2S , y ∈ Rn

++. (5.9)

Then, by using the notation of ŵk in (5.4), (5.8) and (5.9) can be written as

(x− x̂k)⊤
{
(1 + µ)R(xk − x̂k)− f(x̂k) +AT λ̂k +ATHA(xk − x̂k)

}
≤ µ∥xk − x̃k∥2R, x ∈ Rn

++

(5.10)

and

(y − ŷk)⊤
{
(1 + µ)S(yk − ŷk)− g(ỹk) +BT λ̂k +BTHB(yk − ŷk)

}
≤ µ∥yk − ŷk∥2S , y ∈ Rn

++.

(5.11)

In addition, it follows from (2.6) and (5.4) that

Ax̂k +Bŷk − b+H−1(λ̂k − λk)−A(x̂k − xk)−B(ŷk − yk) = 0. (5.12)

Combining (5.10)–(5.12), we get
xk − x̂k

yk − ŷk

λk − λ̂k


⊤

f(x̂k)−A⊤λ̂k −
(
(1 + µ)R+ATHA

)
(xk − x̂k)

g(ŷk)−B⊤λ̂k −
(
(1 + µ)S +B⊤HB

)
(yk − ŷk)

Ax̂k +Bŷk − b−A(xk − x̂k)−B(yk − ŷk) +H−1(λk − λ̂k)

 ≥ −µ∥xk−x̂k∥2R−µ∥yk−ŷk∥2S .

Recall the definition of C in (5.3), we obtain the assertion (5.7). The proof is completed.

⊓⊔

Lemma 5.2 For given wk ∈ Rn
++×Rm

++×Rl and let wk
∗ be defined by (3.3). Then, we have

γαk(w − ŵk)TQ(w) +
1

2
(∥w − wk∥2G − ∥w − wk

∗∥2G ≥ 1

2
γ(2− γ)α2

k∥w − w̃k∥2G. (5.13)
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Proof: Since wk
∗ ∈ Rn

++ ×Rm
++ ×Rl, substituting w = wk

∗ in (5.7), we get

γαk(w
k
∗ − ŵk)TQ(ŵk) ≥ γαk(w

k
∗ − ŵk)TC(wk − ŵk)− µ∥xk − x̂k∥2R − µ∥yk − ŷk∥2S

= γαk(w
k − ŵk)TC(wk − ŵk) + γαk(w

k
∗ − wk)TC(wk − ŵk)

−µ∥xk − x̂k∥2R − µ∥yk − ŷk∥2S .

= γαk(w
k − w̃k)T (N−1)TCN−1(wk − w̃k)

+γαk(w
k
∗ − wk)TCN−1(wk − w̃k)− µ∥xk − x̃k∥2R − µ∥yk − ỹk∥2S

= γαk(w
k − w̃k)T (N−1)TM(wk − w̃k) + γαk(w

k
∗ − wk)TG(wk − w̃k)

= γαkφ(w
k, w̃k) + γαk(w

k
∗ − wk)TG(wk − w̃k)

≥ γαkφ(w
k, w̃k)− 1

2
∥wk − wk

∗∥2G − 1

2
γ2α2

k∥wk − w̃k∥2G

=
1

2
γ(2− γ)α2

k∥w − w̃k∥2G − 1

2
∥wk − wk

∗∥2G. (5.14)

On the other hand, using (3.3) and (5.6), wk
∗ is the projection of wk − γαkG

−1Q(ŵk) on W,

it follows from (2.1) that

(wk − γαkG
−1Q(ŵk)− wk

∗)
TG(w − wk

∗) ≤ 0, ∀w ∈ W

and consequently

γαk(w − wk
∗)

TQ(ŵk) ≥ (wk − wk
∗)

TG(w − wk
∗).

Using the identity aT b = 1
2

(
∥a∥2 − ∥a− b∥2 + ∥b∥2

)
to the right hand side of the last inequal-

ity, we obtain

γαk(w − wk
∗)

TQ(ŵk) ≥ 1

2

(
∥w − wk

∗∥2G − ∥w − wk∥2G
)
+

1

2
∥wk − wk

∗∥2G. (5.15)

Adding (5.14) and (5.15), we get

γαk(w − ŵk)TQ(ŵk) +
1

2
(∥w − wk∥2G − ∥w − wk

∗∥2G ≥ 1

2
γ(2− γ)α2

k∥w − w̃k∥2G

and by using the monotonicity of Q, we obtain(5.13) and the proof is completed. ⊓⊔

Lemma 5.3 For given wk ∈ Rn
++ × Rm

++ × Rl and let wk+1(γαk) be generated by (2.7).

Then, we have

γσαk(w− ŵk)TQ(w)+
1

2
(∥w−wk∥2G−∥w−wk+1(γαk)∥2G ≥ 1

2
σγ(2−γ)α2

k∥w− w̃k∥2G. (5.16)
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Proof:

∥w − wk∥2G − ∥w − wk+1(γαk)∥2G = ∥wk − w∥2G − ∥wk − σ(wk − wk
∗)− w∥2G

= 2σ⟨wk − w,wk − wk
∗⟩ − σ2∥wk − wk

∗∥2G

= 2σ{∥wk − wk
∗∥2G − ⟨w − wk

∗ , w
k − wk

∗⟩} − σ2∥wk − wk
∗∥2G.

(5.17)

Using the following identity

⟨w − wk
∗ , w

k − wk
∗⟩ =

1

2

(
∥wk

∗ − w∥2G − ∥wk − w∥2G
)
+

1

2
∥wk − wk

∗∥2G,

implies

∥wk − wk
∗∥2G − 2⟨w − wk

∗ , w
k − wk

∗)⟩ = (∥wk − w∥2G − ∥wk
∗ − w∥2G). (5.18)

Substituting (5.18) into (5.17), we obtain

∥w − wk∥2G − ∥w − wk+1(γαk)∥2G = σ(∥w − wk∥2G − ∥w − wk
∗∥2G) + σ(1− σ)∥wk − wk

∗∥2G

≥ σ(∥w − wk∥2G − ∥w − wk
∗∥2G). (5.19)

Substituting (5.19) into (5.13), we obtain (5.16), the required result. ⊓⊔

Now, we are ready to present the O(1/t) convergence rate of the proposed method.

Theorem 5.1 For any integer t > 0, we have a ŵt ∈ W which satisfies

(ŵt − w)TQ(w) ≤ 1

2γσΥt
∥w − w0∥2G, ∀w ∈ W ,

where

ŵt =
1

Υt

t∑
k=0

αkŵ
k and Υt =

t∑
k=0

αk.

Proof: Summing the inequality (5.16) over k = 0, · · ·, t, we obtain((
t∑

k=0

γσαk

)
w −

t∑
k=0

γσαkŵ
k

)T

Q(w) +
1

2
∥w − w0∥2G ≥ 0.

Using the notations of Υt and ŵt in the above inequality, we derive

(ŵt − w)TQ(w) ≤ 1

2γσΥt
∥w − w0∥2G, ∀w ∈ W .

Indeed, ŵt ∈ W because it is a convex combination of ŵ0, ŵ1, · · ·, ŵt. The proof is completed.

⊓⊔

It follows from (2.13) that

Υt ≥
2−

√
2

2
(t+ 1) .
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Suppose that for any compact set D ⊂ W, let d = sup{∥w − w0∥G|w ∈ D}. For any given

ϵ > 0, after most

t =
[ d2

(2−
√
2)γσϵ

− 1
]

iterations, we have

(ŵt − w)TQ(w) ≤ ϵ, ∀w ∈ D.

That is, the O(1/t) convergence rate is established in an ergodic sense.

6 Preliminary computational results

In this section we set two examples and applied the proposed method.

6.1 Numerical experiment I

In order to verify the theoretical assertions, we consider the following optimization problem

with matrix variables:

min

{
1

2
∥X − C∥2F : X ∈ Sn

+

}
, (6.1)

where ∥ · ∥F is the matrix Fröbenius norm, that is,

∥C∥F =

 n∑
i=1

n∑
j=1

|Cij |2
1/2

,

Sn
+ =

{
H ∈ Rn×n : H⊤ = H, H ≽ 0

}
.

Note that the matrix Fröbenius norm is induced by the inner product

⟨A,B⟩ = Trace(A⊤B).

Note that the problem (6.1) is equivalent to the following:

min 1
2∥X − C∥2 + 1

2∥Y − C∥2

s.t. X − Y = 0,

X, Y ∈ Sn
+,

(6.2)

by attaching a Lagrange multiplier Z ∈ Rn×n to the linear constraint X−Y = 0, the Lagrange

function of (6.2) is

L(X,Y, Z) =
1

2
∥X − C∥2 + 1

2
∥Y − C∥2 − ⟨Z,X − Y ⟩,
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which is defined on Sn
+×Sn

+×Rn×n. If (X∗, Y ∗, Z∗) ∈ Sn
+×Sn

+×Rn×n is a KKT point of (6.2),

then (6.2) can be converted to the following variational inequality: find u∗ = (X∗, Y ∗, Z∗) ∈ W

= Sn
+ × Sn

+ ×Rn×n such that

⟨X −X∗, (X∗ − C)− Z∗⟩ ≥ 0,

⟨Y − Y ∗, (Y ∗ − C) + Z∗⟩ ≥ 0, ∀ u = (X,Y, Z) ∈ W,

X∗ − Y ∗ = 0.

(6.3)

Problem (6.3) is a special case of (1.2)–(1.3) with matrix variables where A = In×n, B =

−In×n, b = 0, f(X) = X − C, g(Y ) = Y − C and W = Sn
+ × Sn

+ ×Rn×n.

For simplification, we take R = rIn×n, S = sIn×n and H = In×n where r > 0 and s > 0

are scalars. In all tests we take µ = 0.5, γ = 1.98, µ = 0.5, σ = 0.95, β1 = 0.5, β2 = 0.05,

C = rand(n) and (X0, Y 0, Z0) = (In×n, In×n, 0n×n) as the initial point in the test, and r = 1,

s = 10 in tables 3–4. The iteration is stopped as soon as

max
{
∥Xk − X̃k∥, ∥Y k − Ỹ k∥, ∥Zk − Z̃k∥

}
≤ 10−6.

All codes were written in Matlab; we compare the proposed method with that in [24]. The

iteration numbers, denoted by k, and the computational time for problem (6.1) with different

dimensions are given in Tables 1–4.

Tables 1–2 show the efficiency of the proposed method and its superiority to the method of Li

[24] in terms of number of iteration and CPU time.

From tables 3–4, we could see that the proposed method works well when β1 is too large and

β2 is too small. If the parameter β2 is too large, the iteration numbers and the computational

time can increase significantly.

6.2 Traffic equilibrium problems

In this subsection, we apply the proposed method to the traffic equilibrium problems and

present corresponding numerical results. We consider a network [N,L] of nodes N and directed

links L, which consists of a finite sequence of connecting links with a certain orientation.

Let a, b, etc., denote the links, and let p, q, etc., denote the paths. We let ω denote an

origin/destination (O/D) pair of nodes of the network and Pω denotes the set of all paths

connecting O/D pair ω. Note that the path-arc incidence matrix and the path-O/D pair

incidence matrix, denoted by A and B, respectively, are determined by the given network and
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O/D pairs. To see how to convert a traffic equilibrium problem into a variational inequality,

we take into account a simple example depicted in Fig.1.

For the given example in Fig.1, the path-arc incidence matrix A and the path-O/D pair

incidence matrix B have the following forms:

No. link 1 2 3 4 5

A =


0 0 1 0 0

1 0 0 0 1

0 0 0 1 0

0 1 0 0 1

 ,

No. O/D pair ω1 ω2

B =


1 0

1 0

0 1

0 1

 .

Let xp represent the traffic flow on path p and fa denote the link load on link a, then the

arc-flow vector f is given by

f = A⊤x. (6.4)

Let dω denote the traffic amount between O/D pair ω, which must satisfy

dω =
∑
p∈Pω

xp. (6.5)

Thus, the O/D pair-traffic amount vector d is given by

d = B⊤x. (6.6)

Let t(f) = {ta, a ∈ L} be the vector of link travel costs, which is a function of the link flow.

A user travelling on path p incurs a (path) travel cost θp. For given link travel cost vector t,

the path travel cost vector θ is given by

θ = At(f) and thus θ(x) = At(A⊤x). (6.7)

Associated with every O/D pair ω, there is a travel disutility λω(d). Since both the path costs

and the travel disutilities are functions of the flow pattern x, the traffic network equilibrium

problem is to seek the path flow pattern x∗ such that

x∗ ≥ 0 (x− x∗)⊤F (x∗) ≥ 0, ∀ x ≥ 0 (6.8)

where

Fp(x) = θp(x)− λω(d(x)), ∀ ω, p ∈ Pω (6.9)
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and thus

F (x) = At(A⊤x)−Bλ(B⊤x). (6.10)

By introducing a positive slack variable y ≥ 0 and setting g(y) = 0 and B = I, the problem

can be converted into (1.2)-(1.3). The constraints set of problem with link capacity bounds is

S = {x ∈ Rn | A⊤x ≤ b, x ≥ 0}, where b is a given capacity vector. We apply the proposed

method to the example taken from [25] (Example 7.4 in [25]), which consisted of 20 nodes,

28 links and 8 O/D pairs. The network is depicted in Figure 2. For this example, there are

together 49 paths for the 8 given O/D pairs and hence the dimension of the variable x is

49. Therefore, the path-arc incidence matrix A is a 49 × 28 matrix and the path-O/D pair

incidence matrix B is a 49× 8 matrix. The user cost of traversing link a is given in Table 5.

The disutility function is given by

λω(d) = −mωdω + qω (6.11)

and the coefficients mω and qω in the disutility function of different O/D pairs for this example

are given in Table 6.

In all test implementations, we take x0 = (1, . . . , 1)⊤, y0 = (1, . . . , 1)⊤ and λ0 = (0, 0, . . . , 0)⊤

as the starting point, and µ = 0.01, γ = 1.8, β1 = 0.2, β2 = 1.5, σ = 0.95, R = 100I, S = 10I

and H = 20I. For this test problem, the stopping criteria

max

{
∥ex(wk)∥∞
∥ex(w0)∥∞

, ∥ey(wk)∥∞, ∥eλ(wk)∥∞
}

≤ ε, (6.12)

where

e(wk) =


ex(w

k)

ey(w
k)

eλ(w
k)

 =


xk − PRn

+
{xk − [f(xk)−A⊤λk]}

yk − PRn
+
{yk − [g(yk)−B⊤λk]}

Axk +Byk − b

 .

We report the numbers of iteration and the CPU time for different capacities and different ε in

Tables 7-8. As illustrated in the above, the output vector x is the path-flow, and the link flow

vector is ATx. In fact, y∗ in the output is referred to as the toll charge on the congested link.

For the example with link capacity b = 40 we list the optimal link flow and the toll charge in

Table 9. Indeed, the link toll charge is greater than zero if and only if the link flow reaches

the capacity.

Tables 7–8 show that the proposed method solves the traffic equilibrium problem very effi-

ciently.
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7 Conclusions

In this paper, we proposed a new modified logarithmic-quadratic proximal alternating direction

method (LQP-ADM) for solving structured variational inequalities. Each iteration of the new

LQP-ADM includes a prediction step where a prediction point is obtained by solving series of

related systems of nonlinear equations in a parallel wise, and a correction step where the new

iterate is generated by searching the optimal step size along a new descent direction. Global

convergence of the proposed method is proved under mild assumptions. Some preliminary

numerical results are reported to verify the effectiveness of the proposed LQP-ADM in practice.

The proposed method converges quite quickly when proper fixed parameters β1 and β2 was

chosen. However, these proper parameters are unknown beforehand. If the parameter β2 is

large or β1 is small, the number of iterations could be significantly large. How to choose

suitable parameters β1 and β2 for different problems is difficult and deserves further research.

Acknowledgement. The authors are very grateful to the referees for their careful reading,
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Table 1: Numerical results for the problem (6.1) with r = 0.5, s = 5

Dimension of The proposed method The method in [24]

the problem k CPU(Sec.) k CPU(Sec.)

100 52 0.98 70 2.32

300 57 5.32 78 7.04

500 60 12.74 82 14.53

700 62 27.12 85 30.98

Table 2: Numerical results for the problem (6.1) with r = 1, s = 10

Dimension of The proposed method The method in [24]

the problem k CPU(Sec.) k CPU(Sec.)

100 114 1.13 125 2.54

300 128 7.71 140 8.49

500 134 26.94 147 8.25

700 139 57.53 152 59.27
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Table 3: Numerical results of the proposed method for the problem (6.1)with different

β1

Dimension of β1 = 0.5 and β2 = 0.01 β1 = 5 and β2 = 0.01 β1 = 10 and β2 = 0.01

the problem k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)

100 114 1.13 110 1.51 109 1.42

300 128 7.71 123 6.75 122 6.71

500 134 26.94 129 27.16 128 26.25

700 139 57.53 133 65.39 132 59.27

Table 4: Numerical results of the proposed method for the problem (6.1) with different

β2

Dimension of β1 = 0.5 and β2 = 0.01 β1 = 0.5 and β2 = 0.05 β1 = 0.5 and β2 = 0.1

the problem k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)

100 114 1.13 138 1.13 175 1.94

300 128 7.71 156 8.18 198 10.23

500 134 26.94 163 35.23 207 44.24

700 139 57.53 168 80.55 213 100.22
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Table 5: The link traversing cost functions ta(f) in the example

t1(f) = 5 · 10−5f4
1 + 5f1 + 2f2 + 500 t15(f) = 3 · 10−5f4

15 + 9f15 + 2f14 + 200

t2(f) = 3 · 10−5f4
2 + 4f2 + 4f1 + 200 t16(f) = 8f16 + 5f12 + 300

t3(f) = 5 · 10−5f4
3 + 3f3 + f4 + 350 t17(f) = 3 · 10−5f4

17 + 7f17 + 2f15 + 450

t4(f) = 3 · 10−5f4
4 + 6f4 + 3f5 + 400 t18(f) = 5f18 + f16 + 300

t5(f) = 6 · 10−5f4
5 + 6f5 + 4f6 + 600 t19(f) = 8f19 + 3f17 + 600

t6(f) = 7f6 + 3f7 + 500 t20(f) = 3 · 10−5f4
20 + 6f20 + f21 + 300

t7(f) = 8 · 10−5f4
7 + 8f7 + 2f8 + 400 t21(f) = 4 · 10−5f4

21 + 4f21 + f22 + 400

t8(f) = 4 · 10−5f4
8 + 5f8 + 2f9 + 650 t22(f) = 2 · 10−5f4

22 + 6f22 + f23 + 500

t9(f) = 10−5f4
9 + 6f9 + 2f10 + 700 t23(f) = 3 · 10−5f4

23 + 9f23 + 2f24 + 350

t10(f) = 4f10 + f12 + 800 t24(f) = 2 · 10−5f4
24 + 8f24 + f25 + 400

t11(f) = 7 · 10−5f4
11 + 7f11 + 4f12 + 650 t25(f) = 3 · 10−5f4

25 + 9f25 + 3f26 + 450

t12(f) = 8f12 + 2f13 + 700 t26(f) = 6 · 10−5f4
26 + 7f26 + 8f27 + 300

t13(f) = 10−5f4
13 + 7f13 + 3f18 + 600 t27(f) = 3 · 10−5f4

27 + 8f27 + 3f28 + 500

t14(f) = 8f14 + 3f15 + 500 t28(f) = 3 · 10−5f4
28 + 7f28 + 650

Table 6: The O/D pairs and the parameters in (6.11) of the example

(O,D) Pair ω (1, 20) (1, 19) (2, 17) (4, 20) (6, 19) (2, 20) (2, 13) (3, 14)

mω 5 6 1 6 10 10 5 4

qω 1000 2000 5000 1000 5000 2000 1000 2000

No. of the paths 10 9 6 7 4 9 2 2
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Table 7: Numerical results for for different ε with b = 30

Different The proposed method The method in [30]

ε No. It. CPU(Sec.) No. It. CPU(Sec.)

10−5 107 0.68 169 1.12

10−6 125 0.79 197 1.18

10−7 143 0.87 225 1.39

10−8 161 0.96 253 1.15

Table 8: Numerical results for different ε with b = 40

Different The proposed method The method in [30]

ε No. It. CPU(Sec.) No. It. CPU(Sec.)

10−5 98 0.72 154 1.53

10−6 114 0.85 180 1.71

10−7 131 0.99 206 1.85

10−8 148 1.11 231 2.11
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Table 9: The optimal link flow and the toll charge on the link when b = 40

Link Flow Charge Link Flow Charge Link Flow Charge Link Flow Charge

1 0 0 8 32.90 0 15 27.06 0 22 33.95 0

2 12.94 0 9 0 0 16 5.27 0 23 0 0

3 40.00 251.6 10 0 0 17 1.83 0 24 12.94 0

4 12.94 0 11 0 0 18 32.90 0 25 40.00 1245.5

5 0 0 12 33.95 0 19 0 0 26 32.33 0

6 40.00 1254.1 13 27.06 0 20 0 0 27 34.16 0

7 34.73 0 14 12.94 0 21 0 0 28 0 0

35


